Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T20:38:34.305Z Has data issue: false hasContentIssue false

The Structure and Composition of Doped Silicon Oxycarbide Microcrystalline Layers Produced by Spatial Separation Techniques

Published online by Cambridge University Press:  28 February 2011

R. Martins
Affiliation:
Materials Science Department, Faculty of Science and Technology of New University of Lisbon
M. Vieira
Affiliation:
CEMOP/UNINOVA, Quinta da Torre, P-2825 Monte de Caparica, Portugal.
I. Ferreira
Affiliation:
Materials Science Department, Faculty of Science and Technology of New University of Lisbon
E. Fortunato
Affiliation:
Materials Science Department, Faculty of Science and Technology of New University of Lisbon
Get access

Abstract

This work presents experimental data concerning the role of the oxygen partial pressure used during the preparation process, on the structure, composition and optoelectronic properties of wide band gap doped microcrystalline silicon oxycarbide films produced by a TCDDC system [1].

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Martins, R., Guimarães, L., Fortunato, E., Vieira, M., Carvalho, N., Santos, M. and Ferreira, I., Proc. 8th EPVSEC, vol I-n, ed. I. Solomon, B. Equer and P. Helm, 653, (1988).Google Scholar
2 He, S.S., Williams, M. J., Stephens, D.J. and Lucovsky, G., J. of Non.Cryst. Solids, 164–166, 731, (1993).Google Scholar
3 Stein, B.G., Dickson, C. R., Campbell, I. and Fauchet, P. M., Proc. 8th EPVSEC, vol I–II, ed. Solomon, I., Equer, B. and Helm, P., 969, (1988).Google Scholar
4 Guimarães, L., Martins, R., Fortunato, E., Ferreira, I., Santos, M. and Carvalho, N., Proc. Mat. Res. Soc., 118, 617, (1988).Google Scholar
5 Hatori, Y. I., Kruangan, D., Toyama, T., Okamoto, H. and Hamakawa, Y., J. of Non.Cryst. Solids, 87–98, 1079, (1987).Google Scholar
6 Martin, G., Rev. Phys. Appl. 16, 181, (1981).Google Scholar
7 Vieira, M., "Optoelectrónica no silício amorfo hidrogenado - técnicas estáticas e dinâmicas de diagnóstico", Ph.D Thesis, New University of Lisbon, (1993).Google Scholar
8 Watanabe, H., Haga, K. and Lohner, T., J. of Non.Cryst. Solids, 164–166, 1085 (1993).Google Scholar
9 Lucovsky, G., J. Phys. C4, 42, 741, (1981).Google Scholar
10 Turner, W. A. and Lucovsky, G., J. of Non.Cryst. Solids, 164–166, 997 (1993).Google Scholar
11 Mahan, A. H., Raboisson, P. and Tsu, R., Appl. Phys. Lett. 50, 335 (1987).Google Scholar
12 Lucovsky, G., Jing, Z. and Whitten, J. L., J. of Non.Cryst. Solids, 137–138, 119, (1991).Google Scholar
13 Tauc, J. in "Photo and Thermoelectric Effects in Semiconductors", Pergamon, (1962).Google Scholar
14 Landau, L. and Lifshitz, E., in "Electrodynamique des Millieux Continus", MIR, (1969).Google Scholar
15 Veprek, S., Proc. Mat. Res. Soc., Europe, ed. P. Pinard, S. Kalbitzer, 425, (1984).Google Scholar