Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T23:53:43.123Z Has data issue: false hasContentIssue false

Structural Properties of GaN films grown by Molecular Beam Epitaxy on vicinal SiC(0001)

Published online by Cambridge University Press:  21 March 2011

C. D. Lee
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
R. M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
O. Shigiltchoff
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
R. P. Devatya
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
W. J. Choyke
Affiliation:
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260
Get access

Abstract

Gallium nitride films are grown by plasma-assisted molecular beam epitaxy (MBE) on vicinal 6H-SiC(0001) substrates with [1 1 00] and [11 2 0] miscut directions. The hydrogen-etched substrates display straight, or chevron shaped steps respectively, and the same morphology is observed on the GaN films. X-ray rocking curves display substantially reduced width for films on the vicinal substrates compared to singular substrates, for the same Ga/N flux ratio used during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ramachandran, V., Smith, A. R., Feenstra, R. M., and Greve, D. W., J. Vac. Sci. Technol. A 17, 1289 (1999).Google Scholar
[2] Torres, V. M., Edwards, J. L., Wilkens, B. J., Smith, D. J., Doak, R. B., and Tsong, I. S. T., Appl. Phys. Lett. 74, 985 (1999).Google Scholar
[3] Xue, Q. Z., Xue, Q. K., Hasegawa, Y., Tsong, I. S. T., and Sakurai, T., Appl. Phys. Lett. 74, 2468 (1999).Google Scholar
[4] Lantier, R., Rizzi, A., Guggi, D., H. Lüth, Neubauer, B., Gerthsen, D., Frabboni, S., Colì, G., and Cingolani, R., MRS Internet J. Nitride Semicond. Res. 4S1, G3.50 (1999).Google Scholar
[5] Brandt, O., Muralidharan, R., Waltereit, P., Thamm, A., Trampert, A., Kiedrowski, H. von, and Ploog, K. H., Appl. Phys. Lett. 75, 4019 (1999).Google Scholar
[6] Xie, M. H., Zheng, L. X., Cheung, S. H., Ng, Y. F., Wu, H., Tong, S. Y., and Ohtani, N., Appl. Phys. Lett. 77, 1105 (2000).Google Scholar
7] Lee, C. D., Ramachandran, V., Sagar, A., Feenstra, R. M., Greve, D. W., Sarney, W. L. and Salamanca-Riba, L., Look, D. C., Bai, S., Choyke, W. J. and Devaty, R. P., J. Electron. Mat. 30, 162 (2001).Google Scholar
[8] Ramachandran, V., Brady, M. F., Smith, A. R., Feenstra, R. M., and Greve, D. W., J. Electron. Mater. 27, 308 (1998).Google Scholar
[9] Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M.-S., Skowronski, M., Neugebauer, J., and Northrup, J., Appl. Phys. Lett. 72, 2114 (1998).Google Scholar
[10] Lee, C. D., Sagar, A., Feenstra, R. M., Sarney, W. L., Salamanca-Riba, L., and Hsu, J. W. P., Phys. Stat. Sol. (b), to appear.Google Scholar
[11] Lee, C. D., Sagar, A., Feenstra, R. M., Inoki, C. K., Kuan, T. S., Sarney, W. L. and Salamanca-Riba, L., Appl. Phys. Lett. 79, 3248 (2001).Google Scholar