Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T19:18:20.651Z Has data issue: false hasContentIssue false

Structural, Magnetic and Magneto-tranport Properties of Reactive-sputtered Fe3O4 Thin Films

Published online by Cambridge University Press:  01 February 2011

Xinghua Wang
Affiliation:
[email protected], Nanyang technological university, Singapore, Singapore
Sarjoosing Goolaup
Affiliation:
[email protected], Nanyang technological University, Singapore, Singapore
Peng Ren
Affiliation:
[email protected], Nanyang Technological University, Singapore, Singapore
Wen Siang Lew
Affiliation:
[email protected], Nanyang Technological University, Singapore, Singapore
Get access

Abstract

Thin films of magnetite (Fe3O4) are grown on a single-crystal Si/SiO2 (100) substrate with native oxide using DC reactive sputtering technique at room tempreture (RT) and 300C. The x-ray diffraction(XRD) result shows the thermal energy during deposition enhances the crystallization of the Fe3O4 and x-ray photoelectron spectroscopy confirms the film deposited at 300C is single-phase Fe3O4 while the film deposited at RT is mostly ν-Fe2O3. The electrical measurements show that the resistivity of the Fe3O4 film increases exponentially with decreasing temperature, and exhibit a sharp metal-insulator transition at around 100 K, indicating the Verwey transition feature. The saturation magnetization Ms of Fe3O4 film measured by vibrating sample measurement (VSM) at RT was found to be 445 emu/cm3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature, 402, 790, (1999).10.1038/45509Google Scholar
[2] Okada, M., Nagai, S., Neo, Y., Hata, K., and Mimura, H. in 21st International Microprocesses and Nanotechnology Conference, Fukuoka, JAPAN, (2008).Google Scholar
[3] Ramos, A. V., Matzen, S., Moussy, J. B., Ott, F., and Viret, M., Phy. Rev. B, 79, (2009).Google Scholar
[4] Bohra, M., Prasad, S., Venketaramani, N., Kumar, N., Sahoo, S. C., and Krishnan, R., J. Mag. Magn, Mater., 321, pp. 37383741,(2009).10.1016/j.jmmm.2009.07.026Google Scholar
[5] Magen, C., Snoeck, E., Luders, U., and Bobo, J. F., J. Appl. Phys., 104, (2008).10.1063/1.2953100Google Scholar
[6] Jung, M., Park, S., Park, D., and Lee, S. R., J. Korean Institute of Metals and Materials, vol. 47, pp. 378382, Jun 2009.Google Scholar
[7] Jain, S., Adeyeye, A. O., and Boothroyd, C. B., J. Appl. Phys., 97, May (2005).Google Scholar
[8] Kennedy, R. J. and Stampe, P. A., J. of Phys. D-Appl. Phys. 32, pp. 1621,(1999).10.1088/0022-3727/32/1/004Google Scholar
[9] Zhang, Z. and Satpathy, S., Phys. Rev. B, 44, p. 13319, (1991).10.1103/PhysRevB.44.13319Google Scholar
[10] Peng, Y. G., Park, C., and Laughlin, D. E., J. Appl. Phys., 93, pp. 79577959, (2003).10.1063/1.1556252Google Scholar
[11] Reisinger, D., Majewski, P., Opel, M., Alff, L., and Gross, R., Appl. Phys. Lett., 85, pp. 49804982, (2004).10.1063/1.1808497Google Scholar
[12] Yang, J. B., Zhou, D., Yelon, W. B., James, W. J., Cai, Q., Gopalarkishnan, K. V., Malik, S. K., Sun, X. C., and Nikles, D. E., J. Appl. Phys., 95, pp. 75407542, (2004).10.1063/1.1669344Google Scholar
[13] Shepherd, J. P., Koenitzer, J. W., Aragon, R., Spal/ek, J., and Honig, J. M., Phys. Rev. B, 43, p. 8461, (1991).10.1103/PhysRevB.43.8461Google Scholar