Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T01:37:14.588Z Has data issue: false hasContentIssue false

Structural characterization of GaN single crystal layers grown by vapor transport from a gallium oxide (Ga2O3) powder source

Published online by Cambridge University Press:  01 February 2011

Balaji Raghothamachar
Affiliation:
[email protected], Stony Brook University, Materials Science & Engineering, Old Eng Rm 311, Stony Brook, NY, 11794-227, United States, 1 (631) 632 8501, 1 (631) 632 8052
Phanikumar Konkapaka
Affiliation:
[email protected], Cornell University, Department of Electrical and Computer Engineering, United States
Huaqiang Wu
Affiliation:
[email protected], Cornell University, Department of Electrical and Computer Engineering, United States
Michael Dudley
Affiliation:
[email protected], Stony Brook University, Deparment of Materials Science & Engineering, United States
Michael Spencer
Affiliation:
[email protected], Cornell University, Department of Electrical and Computer Engineering, United States
Get access

Abstract

The sublimation growth technique is highly attractive as a commercially viable GaN substrate technology on account of its simplicity and relatively high growth rates. Sublimation growth of GaN using GaN powder source, however, is hampered by formation of liquid Ga in the source. To overcome this limitation, an oxide transport process using a mixture of gallium oxide (Ga2O3) powder and graphite powder as precursors with nitrogen gas as carrier and ammonia as the source of nitrogen has been developed. GaN layers grown by this process were studied by optical microscopy, synchrotron white beam x-ray topography (SWBXT) and high resolution x-ray diffraction (HRXRD) to characterize their structural properties. Studies reveal that the GaN layers grown are single crystal but characterized by dislocation densities and impurities higher than those obtained using GaN powder source. Observed defect distribution is correlated with growth conditions to deduce optimal growth procedure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davis, R.F., Physica B 185, 1 (1993).CrossRefGoogle Scholar
2. Dupuis, R.D., J. Cryst. Growth 178, 56 (1997).CrossRefGoogle Scholar
3. Davis, R. F., Gehrke, T., Linthicum, K. J., Zheleva, T. S., Preble, E. A., Rajagopal, P., Zorman, C. A. and Mehregany, M., J. Cryst. Growth 225, 134 (2001).CrossRefGoogle Scholar
4. Parillaud, O., Wagner, V., Buehlmann, H. J. and Ilegems, Marc, MRS Internet J. Nitride Semicond. Res. 3, 40 (1998).CrossRefGoogle Scholar
5. Porowski, S., J. Cryst. Growth 189/190, 153 (1998).CrossRefGoogle Scholar
6. Grzegory, I., J. Phys.: Cond. Matt. 12, 6875 (2001).Google Scholar
7. Aoki, M., Yamane, H., Shimada, M., Sarayma, S. and DiSalvo, F. J., J. Cryst. Growth 242, 70 (2002).CrossRefGoogle Scholar
8. Molnar, R.J., Götz, W., Romano, L.T. and Johnson, N.M., J. Cryst. Growth 178, 147 (1997).CrossRefGoogle Scholar
9. Raghothamachar, B., Vetter, W. M., Dudley, M., Dalmau, R., Schlesser, R., Sitar, Z., Michaels, E. and Kolis, J. W., J. Cryst. Growth 246, 271 (2002).CrossRefGoogle Scholar
10. Callahan, M. J., Wang, B., Bouthillette, L. O., Wang, S-Q., Kolis, J. W., and Bliss, D. F. in GaN and Related Alloys, edited by Ng, H. M., Wraback, M., Hiramatsu, K., Grandjean, N. (Mater. Res. Soc. Proc. 798, Warrendale, PA, 2004) pp. 263268.Google Scholar
11. Vodakov, Yu. A., Mokhov, E. N., Roenkov, A. D., Boiko, M. E. and Baranov, P.G., J. Cryst. Growth 183, 10 (1998).CrossRefGoogle Scholar
12. Dudley, M. and Huang, X.R. in: Encyclopedia of Materials: Science and Technology, edited by Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. (Elsevier Science, New York, 2001) pp. 98139825.CrossRefGoogle Scholar
13. Dudley, M. and Huang, X.R. in Encyclopedia of Materials: Science and Technology, edited by Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. (Elsevier Science, New York, 2001) pp. 27752786.CrossRefGoogle Scholar
14. Raghothamachar, B., Dudley, M., Wang, B., Callahan, M., Bliss, D., Konkapaka, P., Wu, H. and Spencer, M. in GaN, AlN, InN and Their Alloys, edited by Wetzel, Christian, Gil, Bernard, Kuzuhara, Masaaki, and Manfra, Michael (Mater. Res. Soc. Symp. Proc. 831, Warrendale, PA, 2005), 441446.Google Scholar
15. Qu, H., Konkapaka, P., Makarov, Y. and Spencer, M. G., Phys. Stat. Sol (c) 2, 2032 (2005).Google Scholar
16. Konkapaka, P., et al. accepted for publication in J. Cryst. Growth.Google Scholar
17. Peng, H.Y., Zhou, X.T., Wang, N., Zheng, Y.F., Liao, L.S., Shi, W.S., Lee, C.S. and Lee, S.T., Chem. Phys. Lett. 327, 263 (2000).CrossRefGoogle Scholar