Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T15:52:52.045Z Has data issue: false hasContentIssue false

Structural Characterization of Composition-Modulated ZnSel-xTex Epitaxial Films

Published online by Cambridge University Press:  10 February 2011

M. M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
H. Luo
Affiliation:
State University of New York at Buffalo, NY 14260
J. K. Furdyna
Affiliation:
University of Notre Dame, Notre Dame, IN 46556
Get access

Abstract

We examine the microstructure of short-period (14–31 Å) composition modulations in epitaxial ZnSel-xTex (x@0.5) films grown by molecular-beam epitaxy (MBE) on vicinal (001) GaAs. Transmission electron microscope (TEM) images of cross-sections reveal highly-periodic contrast along the growth direction throughout the full thicknesses of the films (over 2 μm) that corresponds to a nearly sinusoidal variation between Se- and Te-rich compositions. Growth of ZnSe1-xTex at 285°C on substrates tilted 4° toward [1111 maximizes the strength and regularity of the modulation. Using dynamical electron-diffraction simulations, we estimate a modulation amplitude of r@0.184(7) in a sample showing strong modulation. We assume a small amplitude of strain modulation to fit the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zunger, A. and Mahajan, S., Handbook on Semiconductors 3, (Elsevier, Amsterdam, 1993), pp. 2135.Google Scholar
2. McDevitt, T. L., Mahajan, S., Lauhglin, D. E., Bonner, W. A., Keramidas, V. G., Phys. Rev. B45, p. 6614 (1992).Google Scholar
3. Biefeld., R. M., Baucom, K. C., Kurtz, S. R., and Follstaedt, D. M., J. Crystal Growth 133, p. 38 (1993).Google Scholar
4. Hua, G. C., Otsuka, N., Grillo, D. C., Han, J., He, L. and Gunshor, R. L., J. Crystal Growth 138, p. 367 (1994).Google Scholar
5. Ahrenkiel, S. P., Bode, M. H., Al-Jassim, M. M., Luo, H., Xin, S. H. and Furdyna, J. K., J. Electron. Mater. 24, p. 319 (1995).Google Scholar
6. Alavi, K., Petroff, P. M., Wagner, W. R., Cho, A. Y., J. Vac. Sci. Technol. B 1, p. 146 (1983).Google Scholar
7. Smith, G. H. and Burge, R. E., Acta Cryst. 15, p. 182 (1962).Google Scholar
8. Forsyth, J. B. and Wells, M., Acta Cryst. 12, p. 412 (1959).Google Scholar
9. Landolt-Börnstein, , Numerical Data and Functional Relationships in Science and Technology 17 B, ed. Madelung, O. (Springer-Verlag, New York, 1982), pp. 126161.Google Scholar
10. Bethe, H. A., Ann. Phys. 87, p. 55 (1928).Google Scholar
11. Reimer, L., Transmission Electron Microscopy. (Springer-Verlag, New York, 1984), pp. 281300.Google Scholar
12. Radi, G., Acta Cryst. A26, p. 41 (1970).Google Scholar
13. Bird, D. M. and King, Q. A., Acta Cryst. A 46, p. 202 (1990).Google Scholar