Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T13:01:26.031Z Has data issue: false hasContentIssue false

Structural and Optical Characterization of ZnO Nanofilms Deposited by CBD-AμW

Published online by Cambridge University Press:  11 May 2015

J. Díaz-Reyes*
Affiliation:
Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional. Ex–Hacienda de San Juan Molino. Km. 1.5. Tepetitla, Tlaxcala. 90700. México.
R. S. Castillo-Ojeda
Affiliation:
Universidad Politécnica de Pachuca. Km. 20, Rancho Luna, Ex-Hacienda de Santa Bárbara, Municipio de Zempoala, Hidalgo. 43830. México.
J. E. Flores-Mena
Affiliation:
Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla. 18 Sur y San Claudio S/N, Ciudad Universitaria. Col. San Manuel. Puebla, Puebla. 72570. México.
J. Martínez-Juárez
Affiliation:
CIDS-ICUAP, Benemérita Universidad Autónoma de Puebla. 14 Sur y San Claudio S/N, CU. Edif. No. 137. Col. San Manuel. Puebla, Puebla. 72570. México.
*
Get access

Abstract

ZnO was grown by Chemical Bath Deposition technique activated by microwaves (CBD-AμW) on corning glass substrates. The ZnO structural and optical properties are studied as a function of the urea concentration in the growth solution. ZnO chemical stoichiometry was determined by Energy-dispersive X-ray spectroscopy (EDS). The XRD analysis and Raman scattering reveal that ZnO deposited thin films showed hexagonal polycrystalline phase wurtzite type. The Raman spectra present four main peaks associated to the modes E2high, (E2high-E2low), E2low and an unidentified vibrational band observed at 444, 338, 104 and 78 cm-1. The E2low mode involves mainly Zn atoms motion in the unit cell and the E2high mode is associated to oxygen motion. The observed emission peaks in the room temperature photoluminescence spectra are associated at vacancies of zinc and oxygen in the lattice.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, S.Y., Shim, E. S., Kang, H.S., Pang, S.S., Kang, J. S., Thin Solid Films, 437, 31 (2005).CrossRefGoogle Scholar
Hao, X.T., Wei, T.L., Ong, K.S., Zhu, F., J. Cryst. Growth, 287, 44 (2006).CrossRefGoogle Scholar
Ellmer, K., J. Phys. D: Appl. Phys., 33, R17 (2000).CrossRefGoogle Scholar
Jagadish, C., Zinc Oxide Bulk, Thin Films and Nanostructures, First edition, Ed. Elsevier, England (2006).Google Scholar
Calleja, J. M., Phys. Rev. B, 16, 3753 (1977).CrossRefGoogle Scholar
Siegle, H., Kaczmarczyk, G., Filippidis, L., Litvinchuk, A.P., Hoffmann, A., Thomsen, C., Phys. Rev. B, 55, 7000 (1997).CrossRefGoogle Scholar
Serrano, J., Romero, A.H., Manjón, F.J., Lauck, R., Cardona, M., Rubio, A., Phys. Rev. B, 69, 1 (2004).Google Scholar
Cuscó, R., Alarcón Lladó, E., Ibáñez, J., Artús, L., Jiménez, J., Wang, B., Callahan, M.J., Phys. Rev. B, 75, 1 (2007).CrossRefGoogle Scholar
Weinstein, B.A., Solid State Commun, 20, 999 (1976).CrossRefGoogle Scholar
Serrano, J., Manjon, F.J., Romero, A.H., Widulle, F., Lauck, R., Cardona, M., Phys. Rev. Lett., 90 (2003).CrossRefGoogle Scholar
Lin, B., Fu, Z., Jia, Y., Appl. Phys. Lett., 79, 943 (2001).CrossRefGoogle Scholar
Sato, Y., Sati, S., Thin Solid Films, 281 (1996).Google Scholar