Published online by Cambridge University Press: 21 March 2011
Structural and electronic properties of SiCl4-based microcrystalline silicon films were studied. A rather dense (non-porous) material structure is obtained near the transition to amorphous material, in particular at substrate temperatures of 250°C and above. Boron doping results in very high conductivity values while for phosphorus doping only lower values are reached. This latter effect is attributed to a different microstructure with lower crystalline fraction, higher hydrogen and chlorine content and increased porosity in highly phosphorus- doped material.