Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T00:11:47.285Z Has data issue: false hasContentIssue false

Structural and Defect Study of Low Temperature INP Grown by Gas Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

J. Ch. Garcia
Affiliation:
THOMSON CSF Laboratoire Central de Recherches, Domaine de corbeville 91404 Orsay FRANCE
J. P. Hirtz
Affiliation:
THOMSON CSF Laboratoire Central de Recherches, Domaine de corbeville 91404 Orsay FRANCE
P. Maurel
Affiliation:
THOMSON CSF Laboratoire Central de Recherches, Domaine de corbeville 91404 Orsay FRANCE
H. J. Von Bardeleben
Affiliation:
Groupe de Physique des Solides de l' Université Paris VII, 2 place Jussieu 75221 Paris FRANCE
J. C. Bourgoin
Affiliation:
Groupe de Physique des Solides de l' Université Paris VII, 2 place Jussieu 75221 Paris FRANCE
Get access

Abstract

The low temperature growth procedure used in the case of GaAs to introduce high concentrations of deep traps such as arsenic antisite defects has been extended to the growth of InP by gas source molecular beam epitaxy. The low temperature growth of InP induces a strong group V stoechiometric deviation (of the order of +1%). On the other hand, Secondary Ion Mass Spectrometry reveals high levels of hydrogen ranging from 3.1018 to 3.1019 cm−3 depending on growth temperature. Undoped layers are found to be resistive without any post annealing. Annealing experiments above 250°C lead to conductive layers suggesting a passivation effect of both shallow donors and acceptors by hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Wie, C.R., Xie, K., Look, D.C., Evans, K.R. and Stutz, C.E.6th conf. on semi insulating III–V materials, Toronto Canada 1990, p71.Google Scholar
[2]Smith, F.W., Calawa Chang-lee Chen, H.R., Mantra, M.J. and Mahoney, L.J.IEEE elect.Dev. Lett. 9, 77 (1988).10.1109/55.2046Google Scholar
[3]Von Bardeleben, H.J., Stievenard, D., Deresmes, D., Huber, A. and Bourgoin, J.C., Phys.Rev. B34, 7192 (1986)Google Scholar
[4]Frankel, M.Y., Whitaker, J.F., Mourou, G.A., Smith, F.W. and Calawa, A.R., IEEE Trans Electron. Devices 37, 2493 (1990)Google Scholar
[5]Lin, B.J.F., Mars, D.E. and Low, T.S.46th ann. Dev. Res. Conf. (Boulder,Co) 1988, VA-6.Google Scholar
[6]Bardeleben, H.J. Von, Hirtz, J.P.Garcia, J.Ch., Manaresh, M.O., Stutz, C.E. and Evans, K.R., Proceeding of the MRS fall meeting 1991, Boston USA.Google Scholar
[7]Metzger, R.A., Brown, A.S., Wilson, R.G., Liu, T., Stanchina, W.E., Nguyen, L.D., Smitz, A.E., McGray, L.G. and Henige, J.A., Proceeding of the MRS fall meeting 1991, Boston USA.Google Scholar
[8]Kondo, M., Sugawava, M., Yamaguchi, A., Tanahashi, T., Isozumi, S. and Nakojima, K.18th Conf. on solid state devices and materials, Tokyo p627 1986.Google Scholar
[9]Maurel, P., Garcia, J.Ch., Bove, P., Hirtz, J.P. and Grattepain, C., submitted for publication.Google Scholar
[10]Pearton, S.J., Corbett, J.W. and Shi, T.S.Appl. Phys. A43, 153, (1987)10.1007/BF00615975Google Scholar
[11]Pagot, B., (private communication)Google Scholar