Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T09:20:57.856Z Has data issue: false hasContentIssue false

Structural and Chemical Analysis of Nanoscale Resistive Switching Devices: Assessment on Nonlinear Properties

Published online by Cambridge University Press:  27 August 2015

Kate J. Norris
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
J. Joshua Yang
Affiliation:
Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003 USA
Nobuhiko P. Kobayashi
Affiliation:
Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 U.S.A Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, Univ. of California Santa Cruz – NASA Ames Research Center, Moffett Field, CA 94035
Get access

Abstract

Investigation into the phenomenon of resistive switching, a reversible change in electrical resistance by the application of a voltage bias, has given rise to the device fabrication, DC electrical testing, and cross sectional TEM/EELS characterization of nanoscale resistive switching devices. Typically, resistive switching devices are composed of a thin oxide layer between two conductive electrodes where applied bias can alter the resistance states. In a cross-bar array, nonlinearity of device I-V relation is a highly desirable characteristic that helps to mitigate the sneak path current leakage issue. Negative differential resistance (NDR) switching behavior offers such nonlinearity and has been observed in TaOx nanoscale devices utilizing certain electrode materials. To investigate this phenomenon, nanodevices were fabricated by sputtering TaOx onto TiN nanovias capped Nb electrodes. Cross sectional TEM/EELS were performed to reveal the physical and chemical changes in these devices to explore possible origins of nonlinear behavior when these top electrode materials are utilized with TaOx films.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. Nature 2008, 453, 8083.CrossRefGoogle Scholar
Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nano Lett. 2010, 10, 12971301.CrossRefGoogle Scholar
Borghetti, J.; Li, Z.; Straznicky, J.; Li, X.; Ohlberg, D. a a; Wu, W.; Stewart, D. R.; Williams, R. S. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 16991703.CrossRefGoogle Scholar
Waser, R.; Aono, M. Nat. Mater. 2007, 6, 833840.CrossRefGoogle Scholar
Park, G.-S.; Kim, Y. B.; Park, S. Y.; Li, X. S.; Heo, S.; Lee, M.-J.; Chang, M.; Kwon, J. H.; Kim, M.; Chung, U.-I.; Dittmann, R.; Waser, R.; Kim, K. Nat. Commun. 2013, 4, 2382.CrossRefGoogle Scholar
Yang, J. J.; Zhang, M. X.; Strachan, J. P.; Miao, F.; Pickett, M. D.; Kelley, R. D.; Medeiros-Ribeiro, G.; Williams, R. S. Appl. Phys. Lett. 2010, 97.Google Scholar
Miao, F.; Strachan, J. P.; Yang, J. J.; Zhang, M. X.; Goldfarb, I.; Torrezan, A. C.; Eschbach, P.; Kelley, R. D.; Medeiros-Ribeiro, G.; Williams, R. S. Adv. Mater. 2011, 23, 56335640.CrossRefGoogle Scholar
Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. a a; Stewart, D. R.; Williams, R. S. Nat. Nanotechnol. 2008, 3, 429433.CrossRefGoogle Scholar
Joshua Yang, J.; Miao, F.; Pickett, M. D.; Ohlberg, D. a a; Stewart, D. R.; Lau, C. N.; Williams, R. S. Nanotechnology 2009, 20, 215201.CrossRefGoogle Scholar
Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B. H.; Hwang, H. ACS Nano 2012, 6, 81668171.CrossRefGoogle Scholar
Pickett, M. D.; Borghetti, J.; Yang, J. J.; Medeiros-Ribeiro, G.; Williams, R. S. Adv. Mater. 2011, 23, 17301733.CrossRefGoogle Scholar
Pickett, M. D.; Stanley Williams, R. Nanotechnology 2012, 23, 215202.CrossRefGoogle Scholar
Chudnovskii, F. a.; Odynets, L. L.; Pergament, a. L.; Stefanovich, G. B. J. Solid State Chem. 1996, 122, 9599.CrossRefGoogle Scholar
Chopra, K. L. Proc. IEEE 1963, 51.Google Scholar
Futaki, H. Jpn. J. Appl. Phys. 1965, 4, 2841.CrossRefGoogle Scholar