Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T21:15:26.034Z Has data issue: false hasContentIssue false

Strengths and Limitations of the Vacancy Engineering Approach for the Control of Dopant Diffusion and Activation in Silicon

Published online by Cambridge University Press:  01 February 2011

Alain Claverie
Affiliation:
[email protected], CEMES-CNRS, nMat Group, 29, rue J. Marvig, BP4347, Toulouse, 31055, France, 33 5 62 25 79 00
Fuccio Cristiano
Affiliation:
[email protected], LAAS / CNRS, 7 av. du Col. Roche, toulouse, 31077, France
Mathieu Gavelle
Affiliation:
[email protected], LAAS / CNRS, 7 av. du Col. Roche, toulouse, 31077, France
Fabrice Sévérac
Affiliation:
[email protected], LAAS / CNRS, 7 av. du Col. Roche, toulouse, 31077, France
Frédéric Cayrel
Affiliation:
[email protected], LMP, université de Tours, 16 rue Pierre et Marie Curie, BP 7155, Tours, 37071, France
Daniel Alquier
Affiliation:
[email protected], LMP, université de Tours, 16 rue Pierre et Marie Curie, BP 7155, Tours, 37071, France
Wilfried Lerch
Affiliation:
[email protected], Mattson, Mattson Thermal Products GmbH, Daimlerstr. 10, Dornstadt, D-89160, Germany
Silke Paul
Affiliation:
[email protected], Mattson, Mattson Thermal Products GmbH, Daimlerstr. 10, Dornstadt, D-89160, Germany
Leonard Rubin
Affiliation:
[email protected], Axcelis, Axcelis Technologies, 108 Cherry Hill Drive, Beverly, MA, MA 01915, United States
Vito Raineri
Affiliation:
[email protected], CNR / IMM, CRN / IMM, Stradale Primosole 50, Catania, 95121, Italy
Filippo Giannazzo
Affiliation:
[email protected], CNR / IMM, CRN / IMM, Stradale Primosole 50, Catania, 95121, Italy
Hervé Jaouen
Affiliation:
[email protected], STmicroelectronics, STMicroelectronics, 850 rue Jean Monnet, Crolles, 38926, France
Ardechir Pakfar
Affiliation:
[email protected], STmicroelectronics, STMicroelectronics, 850 rue Jean Monnet, Crolles, 38926, France
Aomar Halimaoui
Affiliation:
[email protected], STmicroelectronics, STMicroelectronics, 850 rue Jean Monnet, Crolles, 38926, France
Claude Armand
Affiliation:
[email protected], INSA, Genie Physique, 135, Avenue de Rangueil, toulouse, 31077, France
Nikolay Cherkashim
Affiliation:
[email protected], CEMES-CNRS, nMat Group, 29, rue J. Marvig, BP4347, Toulouse, 31055, France
Olivier Marcelot
Affiliation:
[email protected], CEMES-CNRS, nMat Group, 29, rue J. Marvig, BP4347, Toulouse, 31055, France
Get access

Abstract

The fabrication of highly doped and ultra-shallow junctions in silicon is a very challenging problem for the materials scientist. The activation levels which are targeted are well beyond the solubility limit of current dopants in Si and, ideally, they should not diffuse during the activation annealing. In practice, the situation is even worse and when boron is implanted into silicon excess Si interstitial atoms are generated which enhance boron diffusion and favor the formation of Boron-Silicon Interstitials Clusters (BICs). An elegant approach to overcome these difficulties is to enrich the Si layers where boron will be implanted with vacancies before or during the activation annealing. Spectacular results have been recently brought to the community showing both a significant control over dopant diffusion and an increased activation of boron in such layers. In general, the enrichment of the Si layers with vacancies is obtained by Si+ implantation at high energy. We have recently developed an alternative approach in which the vacancies are injected from populations of empty voids undergoing Ostwald ripening during annealing. While different, the effects are also spectacular. The goal of this work is to establish a fair evaluation of these different approaches under technologically relevant conditions. The application domains of both techniques are discussed and future directions for their development/improvement are indicated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Michel, A. E., Rausch, W., Ronsheim, P. A. and Kastl, R. H., Appl. Phys. Lett. 50 (7), 416 (1987)Google Scholar
2. Stolk, P. A., Gossman, H. J., Eaglesham, D. J. and Poate, J. M.; Nucl. Instrum. Methods Phys. Res. B 96, 187 (1995)Google Scholar
3. Claverie, A., Colombeau, B., Mauduit, B. de, Bonafos, C., Hebras, X., Assayag, G. Ben and Cristiano, F., Appl. Phys. A 76, 10251033 (2003)Google Scholar
4. Pichler, P., Mat. Res. Soc. Symp. Proc., (2002) 717 103 Google Scholar
5. Pichler, P., Ortiz, C. J., Colombeau, B., Cowern, N. E. B., Lampin, E., Uppal, S., Karunaratne, M. S. A., Bonar, J. M., Willoughby, A. F. W., Claverie, A., Cristiano, F., Lerch, W. and Paul, S.; Phys. Scr. T126, 89 (2006)Google Scholar
6. Cristiano, F., Cherkashin, N., Hebras, X., Calvo, P., Mausuit, B. De, Colombeau, B., Lerch, W., Paul, S. and Claverie, A.; Nucl. Instr. Phys. Res. B216, 46 (2004)Google Scholar
7. Brinkman, J. A.; Amer. J. Phys. 24, 246 (1956)Google Scholar
8. Eckstein, W. and Biersack, J.; Nucl. Intrum. Methods B 2, 550 (1984)Google Scholar
9. Holland, O. W. and White, C. W.; Nucl. Intrum. Methods B 59, 353 (1991)Google Scholar
10. Laânab, L., Bergaud, C., Claverie, A.:, MRS. Proc. 279, 381 (1993)Google Scholar
11. Cowern, N. E. B., Smith, A. J., Colombeau, B., Gwilliam, R., Sealy, B. J. and Collart, E. J. H.; Electron Devices Meeting (2005)Google Scholar
12. Raineri, V., Schreutekamp, R. J., Saris, F. W., Janssen, K. T. F. and Kaim, R. E.; Appl. Phys. Lett. 58, 922 (1991)Google Scholar
13. Venezia, V. C., Haynes, T. E., Agarwal, A., Pelaz, L., Gossmann, H. J., Jacobson, D. C. and Eaglasham, D. J.; Appl. Phys. Lett. 74, 1299 (1999)Google Scholar
14. Nejim, A. and Sealy, B. J., Semicond. Sci. Technol. 18; 839 (2003)Google Scholar
15. Shao, L., Wang, X., Bennet, J., Larsen, L. and Chu, W. K.; J. Appl. Phys. 92, 4307 (2002)Google Scholar
16. Gwilliam, R., Cowern, N. E. B., Colombeau, B., Sealy, B. and Smith, A. J., Nucl. Instrum. Methods B 261; 600 (2007)Google Scholar
17. Roth, E. G., Holland, O. W., Venezia, V. C. and Nielsen, B.; J. Electon. Mater. 26, 1349 (1997)Google Scholar
18. Smith, A. J., B. Colombeau, Gwilliam, R., Collart, E., Cowern, N. E. B. and Sealy, B.J.; Mat. Res. Soc. Symp. Proc. 810 (2004)Google Scholar
19. Cayrel, F., Alquier, D., Mathiot, D., Ventura, L., Vincent, L., Gaudin, G. and Jerisian, R.; Nucl. Instrum. Methods B 216, 291 (2004)Google Scholar
20. Mirabella, S., Bruno, E., Priolo, F., Giannazo, F., Bongiorno, C., Raineri, V., Napolitani, E. and Carnera, A.; Appl. Phys. Lett. 88, 191910 (2006)Google Scholar
21. Bruno, E., Mirabella, S., Napolitani, E., Giannazzo, F., Raineri, V. and Priolo, F.; Nucl. Instr. Meth. Phys. Res. B 257, 181 (2007)Google Scholar
22. Marcelot, O., Claverie, A., Cristiano, F., Cayrel, F., Alquier, D., Lerch, W., Paul, S., Rubin, L., Jaouen, H., C. Armand; Nucl. Intr. Phys. Res. B 257, 249 (2007)Google Scholar
23. Marcelot, O., Claverie, A., Alquier, D., Cayrel, F., Lerch, W., Paul, S., Rubin, L., Raineri, V., Giannazzo, F., Jaouen, H.; Sol. Stat. Phen. 131, 357 (2008)Google Scholar