Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T16:19:48.008Z Has data issue: false hasContentIssue false

Strengthening of iron aluminide alloys for high-temperature applications

Published online by Cambridge University Press:  26 February 2011

Martin Palm
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
André Schneider
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
Frank Stein
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
Gerhard Sauthoff
Affiliation:
Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
Get access

Abstract

An overview is given on materials developments of ferritic and Fe3Al-based iron aluminium alloys with strengthening precipitate phases for high-temperature applications currently underway at the Max-Planck-Institut für Eisenforschung GmbH (MPIE). The development of high-temperature alloys for structural applications is to be focussed on optimisation of strength, creep and corrosion resistance at high temperatures and sufficient ductility at lower temperatures. This is discussed with respect to recent studies on Fe-Al-based alloys with strengthening precipitates, such as κ-phase Fe3AlCx, MC-carbides, Laves phase, and the B2-ordered intermetallic phase NiAl. The following alloy systems have been investigated: Fe-Al-X (X=C, Ti, Ta, Mo, Zr), Fe-Al-Ti-Nb, Fe-Al-Ni-Cr, and Fe-Al-M-C (M=Ti, V, Nb, Ta).

The investigations have been focussed on the microstructure, constitution, mechanical properties, and high-temperature corrosion behaviour of Fe-Al-based alloys with Al contents ranging from 10 to 30 at. %.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hardwick, D. and Wallwork, G., Rev. High-Temp. Mater. 4, 47 (1978).Google Scholar
2. Vedula, K., “FeAl and Fe3Al”, Intermetallic Compounds Vol. 2, Practice, ed. Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, Chichester, 1995) pp. 199209.Google Scholar
3. McKamey, C.G., “Iron Aluminides”, Physical Metallurgy and Processing of Intermetallic Compounds, ed. Stoloff, N.S. and Sikka, V.K. (Chapman & Hall, New York, 1996) pp. 351391.Google Scholar
4. Stoloff, N.S., Mater. Sci. Eng. A258, 1 (1998).Google Scholar
5. Natesan, K. and Tortorelli, P.F. in Int. Symp. on Nickel and Iron Aluminides: Processing, Properties, and Applications, edited by Deevi, S.C., Maziasz, P.J., Sikka, V.K. and Cahn, R.W. (ASM International, 1997) pp. 235242.Google Scholar
6. Morris, D.G. and Morris, M.A., Mater. Sci. Eng. A239, 23 (1997).Google Scholar
7. Morris, D.G., Intermetallics 6, 753 (1998).Google Scholar
8. Sauthoff, G., Intermetallics 8, 1101 (2000).Google Scholar
9. Morris, D.G. and Munoz-Morris, M.A., Revista de Metalurgia 37, 230 (2001).Google Scholar
10. Bahadur, A., Mater. Sci. Technol. 19, 1627 (2003).Google Scholar
11. Palm, M., Intermetallics, accepted for publication.Google Scholar
12. Stein, F., Schneider, A. and Frommeyer, G., presented at “Discussion Meeting on the Development of Innovative Aluminium AlloysMPI für Eisenforschung, Düsseldorf, March 9th 2004.Google Scholar
13. Eumann, M., Palm, M. and Sauthoff, G. Intermetallics, 12, 625 (2004).Google Scholar
14. Schneibel, J.H., George, E.P., Specht, E.D. and Horton, J.A., Mater. Res. Soc. Symp. Proc. 364, 73 (1995).Google Scholar
15. Mendiratta, M.G., Ehlers, S.K., Dimiduk, D.M., Kerr, W.R., Mazdiyasni, S. and Lipsitt, H.A., Mater. Res. Soc. Symp. Proc. 81, 393 (1987).Google Scholar
16. Sastry, D.H. and Sundar, R.S. in Int. Symp. on Nickel and Iron Aluminides: Processing, Properties, and Applications, edited by Deevi, S.C., Maziasz, P.J., Sikka, V.K. and Cahn, R.W. (ASM International, 1997) pp. 123144.Google Scholar
17. Baker, I. and George, E.P., Mater. Res. Soc. Symp. Proc. 552, KK4.1.1. (1999).Google Scholar
18. Schmatz, D.J. and Bush, R.H., Acta metall. 16, 207 (1968).Google Scholar
19. Morris, D.G., Zhao, P. and Munoz-Morris, M.A., Mater. Sci. Eng. A297, 256 (2001).Google Scholar
20. Yoshimi, K., Hanada, S. and Yoo, M.H., Acta metall. mater. 43, 4141 (1995).Google Scholar
21. Stoloff, N.S. and Davies, R.G., Acta metall. 12, 473 (1964).Google Scholar
22. Diehm, R.S. and Mikkola, D.E., Mater. Res. Soc. Symp. Proc. 81, 329 (1987).Google Scholar
23. Prakash, U., Buckley, R.A., Jones, H. and Sellars, C.M., ISIJ Int. 31, 1113 (1991).Google Scholar
24. Schröer, W., Hartig, C. and Mecking, H., Z. Metallkde. 84, 294 (1993).Google Scholar
25. Stein, F., Schneider, A. and Frommeyer, G., Intermetallics 11, 71 (2003).Google Scholar
26. Ohnuma, I., Schön, C.G., Kainuma, R., Inden, G. and Ishida, K., Acta mater. 46, 2083 (1998).Google Scholar
27. Palm, M. and Sauthoff, G., Intermetallics 12, 1345 (2004).Google Scholar
28. Palm, M., Inden, G. and Thomas, N., J. Phase Equilibria 16, 209 (1995).Google Scholar
29. Athanassiadis, G., Le Caer, G., Foct, J. and Rimlinger, L., Phys. Stat. Sol. 40a, 425 (1977).Google Scholar
30. Stein, F., Palm, M. and Sauthoff, G., Intermetallics, accepted for publication.Google Scholar
31. Stein, F., Sauthoff, G. and Palm, M., Z. Metallkde. 96, 469 (2004).Google Scholar
32. Risanti, D. D. and Sauthoff, G. in PRCIM-5 Advanced Materials and Processing edited by Zhong, Z.Y., Saka, H., Kim, T.H., Holm, E.A., Han, Y.F. and Xie, X.S. (Trans Tech Publications, Zürich, 2004) pp. 865868.Google Scholar
33. Risanti, D. D. and Sauthoff, G., Intermetallics, accepted for publication.Google Scholar
34. Eumann, M., Palm, M. and Sauthoff, G., Steel Res. Int. 75, 62 (2004).Google Scholar
35. Palm, M. and Inden, G., Intermetallics 3, 443 (1995).Google Scholar
36. Jung, I. and Sauthoff, G., Z. Metallkde. 80, 490 (1989).Google Scholar
37. Sanders, W. and Sauthoff, G., Intermetallics. 5, 361 (1997).Google Scholar
38. Sanders, W. and Sauthoff, G., Intermetallics 5, 377 (1997).Google Scholar
39. Schneider, A., Falat, L., Sauthoff, G. and Frommeyer, G., Intermetallics, accepted for publication.Google Scholar
40. Schneider, A. and Sauthoff, G., Steel Res. Int. 75, 55 (2004).Google Scholar
41. Wunnike-Sanders, W., “Verformungsverhalten der Perowskitphasen im System Fe-Ni-Al-C”, thesis (RWTH Aachen, 1993) pp. 1123.Google Scholar
42. Schneider, A., Falat, L., Sauthoff, G. and Frommeyer, G., Intermetallics 11, 443 (2003).Google Scholar
43. Falat, L., Schneider, A., Sauthoff, G. and Frommeyer, G., Intermetallics, accepted for publication.Google Scholar
44. Maebashi, T., Kozakai, T. and Doi, M., Z. Metallkde. 95, 1005 (2004).Google Scholar
45. Jung, I., “Untersuchung des Verformungsverhaltens ferritischer zweiphasiger Fe-Ni-Al-Legierungen mit groβen Anteilen der intermetallischen (Fe, Ni)Al-Phase bei hohen Temperaturen“, thesis (RWTH Aachen, 1987) pp. 172.Google Scholar
46. Jung, I. and Sauthoff, G., Z. Metallkde. 80, 484 (1989).Google Scholar
47. Stallybrass, C., Schneider, A. and Sauthoff, G., Intermetallics, accepted for publication.Google Scholar
48. Anthony, L. and Fultz, B., Acta metall. mater. 43, 3885 (1995).Google Scholar
49. Prescott, R. and Graham, M.J., Oxidat. Met. 38, 73 (1992).Google Scholar
50. Zhang, Z.G. and Niu, Y. in PRCIM-5 Advanced Materials and Processing edited by Zhong, Z.Y., Saka, H., Kim, T.H., Holm, E.A., Han, Y.F. and Xie, X.S. (Trans Tech Publications, Zürich, 2004) pp. 685688.Google Scholar