No CrossRef data available.
Article contents
Strength of Ultrananocrystalline Diamond Thin films – Identification of Weibull Parameters
Published online by Cambridge University Press: 10 February 2011
Abstract
The fracture strength of ultrananocrystalline diamond (UNCD) thin films, grown by microwaveplasma- enhanced chemical-vapor deposition (PECVD), was measured using the membrane deflection experiment (MDE) developed by Espinosa and coworkers. The data show that UNCD fracture strength appears to follow a Weibull distribution. Furthermore, we show that the Weibull parameters are highly dependent on the seeding process used in the growth of the films. When seeding was performed with micron-size diamond particles, using mechanical polishing of the substrate, the stress, resulting in a probability of failure of 67%, was found to be 1.74 GPa, and the Weibull modulus was 5.74. By contrast, when seeding was performed with nano-size diamond particles, using ultrasonic agitation, the stress, resulting in a probability of failure of 67%, increased to 4.13 GPa and the Weibull modulus was 10.76. The investigation highlights the role of microfabrication defects on material properties and reliability, as a function of seeding technique, when identical PECVD chemistry is employed. The parameters identified in this study are expected to aid the designer of MEMS/NEMS devices employing UNCD films.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002