Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-08T00:18:14.923Z Has data issue: false hasContentIssue false

Strength of Ultrananocrystalline Diamond Thin films – Identification of Weibull Parameters

Published online by Cambridge University Press:  10 February 2011

B. Peng
Affiliation:
Department of Mechanical Engineering, Northwestern University Evanston, IL 60208-3111, USA
N. Moldovan
Affiliation:
Department of Mechanical Engineering, Northwestern University Evanston, IL 60208-3111, USA
X. Xiao
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
O. Auciello
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
J.A. Carlisle
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
D.M. Gruen
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
R.S. Divan
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
D.C. Mancini
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
J.E. Gerbi
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
J. Birrell
Affiliation:
Materials Science and Experimental Facilities Divisions, Argonne National Laboratory, Argonne, IL 60439, USA
Get access

Abstract

The fracture strength of ultrananocrystalline diamond (UNCD) thin films, grown by microwaveplasma- enhanced chemical-vapor deposition (PECVD), was measured using the membrane deflection experiment (MDE) developed by Espinosa and coworkers. The data show that UNCD fracture strength appears to follow a Weibull distribution. Furthermore, we show that the Weibull parameters are highly dependent on the seeding process used in the growth of the films. When seeding was performed with micron-size diamond particles, using mechanical polishing of the substrate, the stress, resulting in a probability of failure of 67%, was found to be 1.74 GPa, and the Weibull modulus was 5.74. By contrast, when seeding was performed with nano-size diamond particles, using ultrasonic agitation, the stress, resulting in a probability of failure of 67%, increased to 4.13 GPa and the Weibull modulus was 10.76. The investigation highlights the role of microfabrication defects on material properties and reliability, as a function of seeding technique, when identical PECVD chemistry is employed. The parameters identified in this study are expected to aid the designer of MEMS/NEMS devices employing UNCD films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gruen, D.M., Annu. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
2. Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994).Google Scholar
3. Bhattacharyya, B., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Sumant, A., and Zapol, P., Appl. Phys. Lett. 79, 1441 (2001).Google Scholar
4. Peterson, K.E., Proc. IEEE 70, 5 (1982).Google Scholar
5. Cardinale, G.F. and Robinson, C.J., J. Mater. Res. 7, 6 (1992).Google Scholar
6. Lohner, K., Chen, K., Ayon, A. and Spearing, S.M., Mat. Res. Soc. Symp. Proc. 546, (1999).Google Scholar
7. Sharpe, W.N. Jr, Jackson, K.M., Hemker, K.J., and Xie, Z., J. MEMS 10, 3 (2001).Google Scholar
8. Sharpe, W. N. Jr, Jackson, K., Coles, G. and LaVan, D. A., Mat. Res. Soc. Symp. Proc. 657, (2001).Google Scholar
9. Field, J.E., The Properties of Diamond, London, (1979).Google Scholar
10. Coles, G., Sharpe, W.N. Jr, and Edwards, R.L., Soc. Exp. Mech., 14, (2001).Google Scholar
11. Chasiotis, I., Cho, S., Friedman, T.A., and Sullivan, J., Proc. Soc. Exp. Mech., (2003).Google Scholar
12. Bagdahn, J. and Sharpe, W. N. Jr, Mat. Res. Soc. Symp. Proc. 687, (2002).Google Scholar
13. Jackson, K.M., Edwards, R.L., Dirras, G.F., and Sharpe, W.N. Jr, Mat. Res. Soc. Symp. Proc. 687, (2002).Google Scholar
14. Chasiotis, I., Knauss, W.G., SPIE 4175, (2000).Google Scholar
15. LaVan, D.A., Tsuchiya, T., Coles, G., Knauss, W.G., Chasiotis, I., and Read, D., ASTM STP 1413, (2001).Google Scholar
16. Shih, T.T., Eng. Frac. Mech., 13, 257 (1980).Google Scholar
17. Gruen, D.M., Liu, S., Krauss, A.R., Luo, J., and Pan, X., Appl. Phys. Lett. 64, 1502 (1994).Google Scholar
18. Moldovan, N., Auciello, A., Sumant, A., A., J., , Carlisle, Divan, R., Gruen, D.M., Krauss, A.R., Mancini, D.C., Jayatissa, A., and Tucek, J., Proc. of SPIE 4557, 288 (2001).Google Scholar
19. Espinosa, H.D., Prorok, B.C., Peng, B., and Kim, K.H., Moldovan, N., Auciello, O., Carlisle, J.A., Gruen, D.M., and Mancini, D.C., to appear in Experimental Mechanics (2003).Google Scholar
20. Espinosa, H.D., Prorok, B.C., and Fisher, M., J. Mech. Phy. Solids, 51, 47 (2003).Google Scholar
21. Hallinan, A.J. Jr, J. Qua. Tech. 25, 2 (1993).Google Scholar
22. Espinosa, H.D., Peng, B., Prorok, B.C., and Moldovan, N., Auciello, O., Carlisle, J.A., Gruen, D.M., and Mancini, D.C., submitted to J. Appl. Phys. (2003).Google Scholar