Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T12:43:06.442Z Has data issue: false hasContentIssue false

Steady-state and transient electron transport within bulk wurtzite zinc oxide and the resultant electron device performance

Published online by Cambridge University Press:  12 April 2013

Walid A. Hadi
Affiliation:
Department of Electrical and Computer Engineering, University of Windsor, Windsor, Ontario, Canada N9B 3P4
Michael S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, U.S.A.
Stephen K. O’Leary
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

We review some recent results related to the steady-state and transient electron transport that occurs within bulk wurtzite zinc oxide. We employ three-valley Monte Carlo simulations of the electron transport within this material for the purposes of this analysis. Using these results, we devise a means of rendering transparent the electron drift velocity enhancement offered by transient electron transport over steady-state electron transport. A comparison, with results corresponding to gallium nitride, indium nitride, and aluminum nitride, is provided. The device implications of these results are then presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., and Steiner, T., J. Vac. Sci. Technol. B 22, 932 (2004).CrossRefGoogle Scholar
Albrecht, J. D., Ruden, P. P., Limpijumnong, S., Lambrecht, W. R. L., and Brennan, K. F., J. Appl. Phys. 86, 6864 (1999).CrossRefGoogle Scholar
Guo, B., Ravaioli, U., and Staedele, M., Comp. Phys. Commun. 175, 482 (2006).CrossRefGoogle Scholar
Bertazzi, F., Goano, M., and Bellotti, E., J. Electron. Mater. 36, 857 (2007).CrossRefGoogle Scholar
Furno, E., Bertazzi, F., Goano, M., Ghione, G., and Bellotti, E., Solid-State Electron. 52, 1796 (2008).CrossRefGoogle Scholar
O'Leary, S. K., Foutz, B. E., Shur, M. S., and Eastman, L. F., Solid State Commun. 150, 2182 (2010).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Appl. Phys. 112, 033720 (2012).CrossRefGoogle Scholar
Hadi, W. A., Chowdhury, S., Shur, M. S., and O’Leary, S. K., J. Appl. Phys. 112, 123722 (2012).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Mater. Sci.: Mater. Electron. 24, 2 (2013).Google Scholar
Lugli, P. and Ferry, D. K., IEEE Trans. Electron Devices 32, 2431 (1985).CrossRefGoogle Scholar
Seeger, K., Semiconductor Physics: An Introduction, 9th ed. (Springer-Verlag, Berlin, 2004).CrossRefGoogle Scholar
Foutz, B. E., O’Leary, S. K., Shur, M. S., and Eastman, L. F., J. Appl. Phys. 85, 7727 (1999).CrossRefGoogle Scholar