Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T12:21:58.850Z Has data issue: false hasContentIssue false

Spiral Photonic Actuator

Published online by Cambridge University Press:  31 January 2011

Jin Kwang-Yong
Affiliation:
[email protected], Chonbuk National University, Polymer-Nano Science & Technology, Jeonju, Korea, Republic of
Park Seul-Ki
Affiliation:
[email protected], Chonbuk National University, Polymer-Nano Science & Technology, Jeonju, Korea, Republic of
Jang Ji-Hyun
Affiliation:
[email protected], Massachusetts Institute of Technology, Institute for Soldier Nanotechnologies and Department of Materials Science and Engineering, Cambridge, United States
Cheongyang Koh
Affiliation:
[email protected], Massachusetts Institute of Technology, Institute for Soldier Nanotechnologies and Department of Materials Science and Engineering, Cambridge, United States
Mattew J Graham
Affiliation:
[email protected], The University of Akron, Department of Polymer Science, akron, Ohio, United States
Park Soo-Jin
Affiliation:
[email protected], Chonbuk National University, Polymer-Nano Science & Technology, Jeonju, Korea, Republic of
Nah Changwoon
Affiliation:
[email protected], Chonbuk National University, Polymer-Nano Science & Technology, Jeonju, Korea, Republic of
Lee Myung-Hoon
Affiliation:
[email protected], Chonbuk National University, Polymer-Nano Science & Technology, Jeonju, Korea, Republic of
Stephen Z. D. Cheng
Affiliation:
[email protected], The University of Akron, Department of Polymer Science, akron, Ohio, United States
Edwin Thomas
Affiliation:
[email protected], Massachusetts Institute of Technology, Institute for Soldier Nanotechnologies and Department of Materials Science and Engineering, Cambridge, United States
Jeong Kwang-Un
Affiliation:
[email protected], Chonbuk National University, Polymer-Nano Science & Technology, Jeonju, Korea, Republic of
Get access

Abstract

There has been a significant effort to create spiral sensors by changing either the periodic d-spacing of the structure or the dielectric constants of the materials by combining the multi-faceted environmental responsiveness of polymer hydrogels with dielectrical structures.1 Reversible spiral switches with dimensional functionalities that respond to chemical environment were constructed. When the spiral photonic actuator was swollen in hydrophilic acetic acid, right-handed spiral structures are formed, while the spiral photonic actuator was swollen in hydrophobic hexane, left-handed spiral structures are formed. All actuators returned back to the transparent planar state after deswelling processes. These reversible spiral photonic actuators can be applied in the application of mechanical actuators, electrical devices, and optical components.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jeong, K.-U., Jang, J.-H., Koh, C. Y., Graham, M. J., Jin, K.-Y., Park, S.-J., Nah, C., Lee, M.-H., Cheng, S.Z.D., and Thomas, E. L., J. Mater. Chem., 19, 19561958, (2009).10.1039/b822980pGoogle Scholar
2 Vukusic, P., Sambles, J. R. and Lawrence, C. R., Nature, 404, 457, (2000).10.1038/35006561Google Scholar
3 Maldovan, M. and Thomas, E. L., Nature Mater., 3, 593, (2004).10.1038/nmat1201Google Scholar
4 Dziomkina, N. V. and Vancso, G. J., Soft Matter, 1, 265, (2005).10.1039/b503145cGoogle Scholar
5 Yethiraj, A., Soft Matter, 3, 1099, (2007).10.1039/b704251pGoogle Scholar
6 Musevic, I. and Skarabot, M., Soft Matter, 4, 195, (2008).10.1039/B714250AGoogle Scholar
7 Ahir, S. V. and Terentjev, E. M., Nature Mater., 4, 491, (2005).10.1038/nmat1391Google Scholar
8 Ebron, V. H., Yang, J. W., Seyer, D. J., Kozlov, M. E., Oh, J. Y., Xie, H., Razal, J., Hall, L. J., Ferraris, J. P., MacDiarmid, A. G. and Baughman, R. H., Science, 311, 1580, (2006).10.1126/science.1120182Google Scholar
9 Rey, R. D., Soft Matter, 3, 1349, (2007).10.1039/b704248pGoogle Scholar
10 Haider, S., Park, S. Y. and Lee, S. H., Soft Matter, 4, 485, (2008).10.1039/b713944fGoogle Scholar
11 Thornton, P. D., Mart, R. J., Webb, S. J. and Ulijn, R. V., Soft Matter, 4, 821, (2008).10.1039/b714750cGoogle Scholar
12 Mason, S. F., Nature, 311, 19, (1984).10.1038/311019a0Google Scholar
13 Li, C. Y., Cheng, S.Z.D., Ge, J. J., Bai, F., Zhang, J. Z., Mann, I. K., Harris, F. W., Chien, L.-C., Yan, D., He, T. and Lotz, B., Phys. Rev. Lett., 83, 4558, (1999); J. Am. Chem. Soc., 123, 2462, (2001).10.1103/PhysRevLett.83.4558Google Scholar
14 Shen, H., Jeong, K.-U., Xiong, H., Graham, M. J., Leng, S., Zheng, J. X., Huang, H., Guo, M., Harris, F. W. and D, S. Z.. Cheng, Soft Matter, 2, 232, (2006).10.1039/b516557aGoogle Scholar
15 Mart, R. J., Osborne, R. D., Stevens, M. M. and Ulijn, R. V., Soft Matter, 2006, 2, 822;10.1039/b607706dGoogle Scholar
16 Gornall, J. L. and .Terentjev, E M., Soft Matter, 4, 544, (2008).10.1039/b713075aGoogle Scholar
17 Zubay, G., Biochemistry, 2nd ed., (Macmillan Publishing Company, New York, 1988), pp. 8451151.Google Scholar
18 Purrello, R., Nature Mater., 2, 216, (2003).10.1038/nmat864Google Scholar
19 Jeong, K.-U., Jin, S., Ge, J. J., Knapp, B. S., Graham, M. J., Ruan, J., Guo, M., Xiong, H., Harris, F. W. and Cheng, S. Z. D., Chem. Mater., 17, 2852, (2005); Macromolecules, 38, 8333, (2005); Polymer, 47, 3351, (2006); Adv. Mater., 18, 3229, (2006); Chem. Mater., 18, 680, (2006).10.1021/cm050338yGoogle Scholar
20 Yang, D.-K., Jeong, K.-U. and Cheng, S. Z. D., J. Phys. Chem. B, 112, 1358, (2008).10.1021/jp076719bGoogle Scholar
21 Kamien, R. D., Science, 315, 1083, (2007).10.1126/science.1138506Google Scholar
22 Klein, Y., Efrati, E. and Sharon, E., Science, 315, 1116, (2007).10.1126/science.1135994Google Scholar
23 Osada, Y., Okuzaki, H. and Hori, H., Nature, 355, 242, (1992).10.1038/355242a0Google Scholar
24 Smela, E., Adv. Mater., 15, 481, (2003).10.1002/adma.200390113Google Scholar
25 Kim, S. J., Spinks, G. M., Prosser, S., Whitten, P. G., Wallace, G. G. and Kim, S. I., Nature Mater., 5, 48, (2006).10.1038/nmat1553Google Scholar
26 Huang, J. Y., Wang, X. D. and Wang, Z. L., Nano Lett., 6, 2325, (2006).10.1021/nl061851tGoogle Scholar
27 Joannopoulos, J. D., Meade, R. D., Winn, J. N., Photonic Crystals: Molding the Flow of Light, (Princeton University, 1995).Google Scholar
28 Holtz, J. H. and Asher, S. A., Nature, 389, 829, (1997).10.1038/39834Google Scholar
29 Weissman, J. M., Sunkara, H. B., Tse, A. S. and Asher, S. A., Science, 274, 959, (1996).10.1126/science.274.5289.959Google Scholar
30 Fialkowski, M., Bitner, A. and Grzybowski, B. A., Nature Mater., 4, 93, (2005).10.1038/nmat1267Google Scholar
31 Jiang, P., Bertone, J. F., Hwang, K. S. and Colvin, V. L., Chem. Mater., 11, 2132, (1999).10.1021/cm990080+Google Scholar
32 Jiang, P., Hwang, K. S., Mittleman, D. M., Bertone, J. F. and Colvin, V. L., J. Am. Chem. Soc., 121, 11630, (1999).10.1021/ja9903476Google Scholar