Article contents
Spin Resonance Studies on free Electrons and Defects in Microcrystalline Silicon
Published online by Cambridge University Press: 28 February 2011
Abstract
The effect of micro-doping, defect creation, and non-steady state occupation through optical transitions on the electron spin resonance signals found in undoped and weakly doped microcrystalline silicon with a high degree of crystallinity is investigated. The experimental results are in agreement with the assignment of the resonance at g=1.9983 to conduction electrons in the crystalline grains and the resonanccs around g=2.0052 to dangling bonds in the remaining amorphous phase and at the grain boundaries. The simultaneous presence of both resonances can result from a large conduction band offset between crystalline grains and grain boundaries or the amorphous phase. The presence of conduction electron spin resonance in compensated and even p-type material points also to potential fluctuations. Free electrons in interconnected crystalline grains are in agreement with the weakly activated transport found in µc-Si:H at low temperatures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1995
References
REFERENCES
- 11
- Cited by