Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T20:37:47.597Z Has data issue: false hasContentIssue false

Spin Resonance Studies on free Electrons and Defects in Microcrystalline Silicon

Published online by Cambridge University Press:  28 February 2011

C. Malten
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
F. Finger
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
P. Hapke
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
T. Kulessa
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
C. Walker
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Carius
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
R. Flückiger
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
H. Wagner
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jülich, D-52425 Jülich, Germany
Get access

Abstract

The effect of micro-doping, defect creation, and non-steady state occupation through optical transitions on the electron spin resonance signals found in undoped and weakly doped microcrystalline silicon with a high degree of crystallinity is investigated. The experimental results are in agreement with the assignment of the resonance at g=1.9983 to conduction electrons in the crystalline grains and the resonanccs around g=2.0052 to dangling bonds in the remaining amorphous phase and at the grain boundaries. The simultaneous presence of both resonances can result from a large conduction band offset between crystalline grains and grain boundaries or the amorphous phase. The presence of conduction electron spin resonance in compensated and even p-type material points also to potential fluctuations. Free electrons in interconnected crystalline grains are in agreement with the weakly activated transport found in µc-Si:H at low temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Finger, F., Malten, C., Hapke, P., Carius, R., Flückiger, R. and Wagner, H., Phil. Mag. Lett. 70 (1994) 247 Google Scholar
2 Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H. and Scheib, M., Appl. Physics Lett. 65 (1994) 2588 Google Scholar
3 Hapke, P., Finger, F., Luysberg, M., Carius, R. and Wagner, H., this conferenceGoogle Scholar
4 Fluckiger, R., Meier, J., Keppner, H., Goetz, M. and Shah, A., Proc. 23rd IEEE Photovoltaic Specialist Conference, Louisville, Kentucky (1993) 839Google Scholar
5 Willeke, G., in Physics and applications of amorphous and microcrystalline semiconductor devices, edited by Kanicki, J., Artech House (1992) 55 Google Scholar
6 Caplan, P.S., Pointdexter, E.H., Deal, B.E. and Razouk, R.R., J. Appl. Phys. 50 (1979) 5847 Google Scholar
7 Sieverts, E.G., Phys. Stat. Sol. B 120 (1983) 11 Google Scholar
8 Suezawa, M., Sumino, K. and Iwaizumi, M., J. Appl. Phys. 54 (1983) 6594 Google Scholar
9 Ballutaud, D., Aucouturier, M. and Babonneau, F., Appl. Phys. Lett. 49 (1986) 1620 Google Scholar
10 Portis, A.M., Kip, A.F., Kittel, C., and Brattain, W.H., Phys. Rev. 90 (1953) 988 Google Scholar
11 Hasegawa, S., Kasajima, T., and Shimizu, T., J. Appl. Phys. 50 (1979) 7256 Google Scholar
12 Hasegawa, S., Narikawa, S., and Kurata, Y., Phil. Mag. B 48 (1983) 431 Google Scholar
13 von Bardleben, H.J., Ortega, C., Grosman, A., Morazzani, V., Siejka, J. and Stievenard, D., J. Luminescence 57 (1993) 301 Google Scholar
14 Tzolov, M. and Hapke, P., unpublishedGoogle Scholar
15 Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors, Springer Tracts In Modern Physics Vol. 114, Berlin (1989)Google Scholar