Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T04:47:09.389Z Has data issue: false hasContentIssue false

Spin Polarization of Electrons Injected from Fe into GaAs Quantum Well Characterized using Oblique Hanle Effect

Published online by Cambridge University Press:  31 January 2011

Eiji Wada
Affiliation:
[email protected], Tokyo Institute of Technology, Materials and Structures Laboratory, Yokohama, Japan
Mitsuru Itoh
Affiliation:
[email protected], Tokyo Institute of Technology, Materials and Structures Laboratory, Yokohama, Japan
Tomoyasu Taniyama
Affiliation:
[email protected], PRESTO-JST, Tokyo, Japan
Masahito Yamaguchi
Affiliation:
[email protected], Nagoya University, Graduate school of Engineering, Nagoya, Japan
Get access

Abstract

We study spin injection from an in-plane magnetized Fe thin layer into a GaAs/AlGaAs quantum well (QW) in low magnetic fields of ±0.37 T using oblique Hanle effect. An oblique low magnetic field induces the precession of electron spins in the GaAs QW, allowing us to detect the spin polarization of electrons injected across the Fe/AlGaAs interface. Our analysis of the circular polarization of light emitted in the electron-hole recombination process in the QW gives an estimate of the lower bounds of the spin polarization to be 4.0%. Also, a spin lifetime of 140 psec is obtained in this analysis, indicating that spin depolarization at the Fe/AlGaAs interface is more predominant rather than spin relaxation in the QW region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jonker, B. T., Park, Y. D., Bennett, B. R., Cheong, H. D., Kioseoglou, G., and Petrou, A., Phys. Rev. B, 62, 8180 (2000).Google Scholar
2 Kawaharazuka, A., Ramsteiner, M., Herfort, J., Schönherr, H.-P., Kostial, H., and Ploog, K. H., Appl. Phys. Lett,. 85, 3492 (2004).Google Scholar
3 Jiang, X., Wang, R., Shelby, R. M., Macfarlane, R. M., Bank, S. R., Harris, J. S. and Parkin, S. S. P., Phys. Rev. Lett,. 94, 056601 (2005).Google Scholar
4 Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T., and Wees, B. J. van, Phys. Rev. B, 62, R4790 (2000).Google Scholar
5 Zhu, H. J., Ramsteiner, M., Kostial, H., Wassermeier, M., Schönherr, H.-P., and Ploog, K. H., Phys. Rev. Lett,. 87, 016601 (2001).Google Scholar
6 Motsnyi, V. F., Dorpe, P. Van, Roy, W. Van, Goovaerts, E., Borghs, G., and Boeck, J. De, Phys. Rev. B, 68, 245319 (2003).Google Scholar
7 Gurioli, M., Vinattieri, A., and Colocci, M., Deparis, C., Massies, J., Neu, G., Bosacchi, A., and Franchi, S., Phys. Rev. B, 44, 3115 (1991).Google Scholar
8 Snelling, M. J., Blackwood, E., McDonagh, C. J., Harley, R. T., and Foxon, C. T. B., Phys. Rev. Lett,. 45, 3922 (1992).Google Scholar
9 Hickey, M. C., Damsgaard, C. D., Farrer, I., Holmes, S. N., Husmann, A., Hansen, J. B., Jacobsen, C. S., Ritchie, D. A., Lee, R. F., Jones, G. A. C., and Pepper, M., Appl. Phys. Lett,. 86, 252106 (2005).Google Scholar