Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:03:31.013Z Has data issue: false hasContentIssue false

Spectroscopic Ellipsometric Characterization of Low Temperature GaAs

Published online by Cambridge University Press:  26 February 2011

X. Gao
Affiliation:
Center for Microelectronic and Optical Materials Research, and Dept. of Electrical Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE 68588–0511
P. G. Snyder
Affiliation:
Center for Microelectronic and Optical Materials Research, and Dept. of Electrical Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE 68588–0511
P. W. Yu
Affiliation:
WL/MLPO Bldg. 651, Wright Patterson AFB, OH 45433–7707
Y. Q. Zhang
Affiliation:
Nanjing Electronic Devices Institute, Nanjing, 210016, P. R. China
Z. F. Peng
Affiliation:
Nanjing Electronic Devices Institute, Nanjing, 210016, P. R. China
Get access

Abstract

Pseudodielectric functions of low temperature grown GaAs (LT GaAs) measured by spectroscopic ellipsometry are presented. The spectral range includes the El (2.92eV) and El+ΔAl (3.13eV) critical point structure of GaAs. A Lorentz-oscillator model was used to fit the dielectric function of LT GaAs for samples with nominal growth temperatures (Tg) varying from 200°C to 580°C. For Tg of 200°C, 30% and 19% broadenings and −0.01 leV and −0.007eV red shifts were found for the El and El+Δl structures respectively, compared with normal GaAs. The red shift can be explained in terms of a strain effect in the LT layer. In annealed LT GaAs the broadening decreased significantly and no red shift was found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, F. W., Calawa, A. R., Chen, C.-L., Manfra, M. J., and Mahoney, L. J., IEEE Electron Device Lett. 9, 77 (1988).Google Scholar
2. Kaminska, M., Lilient-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsaur, B-Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
3. Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., Mclnturff, D. T., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
4. Yu, K. M. and Lilient-Weber, Z., Appl. Phys. Lett. 59, 3267 (1991).Google Scholar
5. Look, D. C., Thin Solid Films 231, 61 (1993).Google Scholar
6. Maty, R. J., Melloch, M. R., and Woodall, J. M., Appl. Phys. Lett. 60, 2642 (1992).Google Scholar
7. Azzam, R. M. A. and Bashara, N. M., Ellipsometry and Polarized light, (North-Holland, New York, 1977), Ch. 4.Google Scholar
8. Jellison, G. E. Jr., Appl. Opt. 30, 3354 (1991).Google Scholar
9. Palik, E. ed., Handbook of Optical Constants of Solids. (Academic, Orlando, 1985), Ch. 5.Google Scholar
10. Zollner, S., Appl. Phys. Lett. 63, 2525 (1993).Google Scholar
11. Erman, M., Theeten, J. B., Chambon, P., Kelso, S. M., and Aspnes, D. E., J. Appl. Phys. 56, 2664 (1984).Google Scholar
12. Pollak, F. H., in Strained-Layer Superlattice: Physics, Semiconductors and Semimetals. edited by Pearsall, T. P. (Academic Press, 1990), P. 40.Google Scholar
13. M . Herzinger, C., Snyder, P. G., Celii, F. G., Kao, Y.-C., Chow, D., Johs, B., and Woollam, J. A., submitted for publication in J. Appl. Phys.Google Scholar
14. Brice, J. C.. Properties of Gallium Arsenide. (The Institute of Electrical Engineering, London and New York 1990), P. 15.Google Scholar