Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:45:12.027Z Has data issue: false hasContentIssue false

Solid-Phase Epitaxial Regrowth and Dopant Activation of Arsenic. Implanted Metastable Pseudomorphic Ge0.08Si0.92 AND GeO.16SiO.84 ON Si(100)

Published online by Cambridge University Press:  15 February 2011

D.Y.C. Lie
Affiliation:
M/S 116-81. California Institute of Technology, Pasadena, CA 91125
J.H. Song
Affiliation:
M/S 116-81. California Institute of Technology, Pasadena, CA 91125
M.-A. Nicolet
Affiliation:
M/S 116-81. California Institute of Technology, Pasadena, CA 91125
N.D. Theodore
Affiliation:
Motorola Inc., Mesa, AZ 85202
J. Candelaria
Affiliation:
Motorola Inc., Mesa, AZ 85202
S.G. Thomas
Affiliation:
Department of E.E., UCLA, CA 90024
M.O. Tanner
Affiliation:
Department of E.E., UCLA, CA 90024
K.L. Wang
Affiliation:
Department of E.E., UCLA, CA 90024
Get access

Abstract

Metastable pseudomorphic GexSi1−x (x=8%,16%) films were deposited on p-Si(100) substrates by chemical-vapor-deposition and then implanted at room temperature with 90 keV arsenic ions to a dose of 1.5×1015/cm2. The implantation amorphizes approximately the top 125 nm of the 145 nm-thick GeSi layers. The Si-GeSi interfaces remain sharp after implantation. Implanted and non-implanted GeSi samples, together with implanted Si control samples, were subsequently annealed simultaneously by rapid thermal annealing in a nitrogen ambient at 600,700,800 × for 10,20,40s at each temperature. The implanted samples undergo layer-by-layer solid-phase epitaxial regrowth during annealing at or above 600 ×C. The amorphized and regrown GeSi layers are always fully relaxed with a very high density of dislocations (1010-1011/cm2). At a fixed annealing temperature, strain relaxation of an implanted GeSi film is substantially more extensive than that of a non-implanted one. About 50-90% of the implanted arsenic ions become electrically active after the completion of solid-phase epitaxy. The percentages of arsenic ions that are activated in the Si control samples are generally higher than those in GeSi. The room-temperature sheet electron mobility in GeSi is roughly 30% lower than that in Si for a given sheet electron concentration. We conclude that metastable GeSi on Si(100) amorphized by arsenic ions and recrystallized by solid-phase epitaxy cannot recover both its crystallinity and its pseudomorphic strain under rapid thermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example: Olson, G. L. and Roth, J. A., Mater. Sci. Rep. 3, 1 (1988); or VLSI Technology, edited by S.M. Sze, ch. 8, (McGraw-Hill, Singapore, 1988)Google Scholar
2. Paine, D. C., Evans, N. D. and Stoffel, N. G., J. Appl. Phys. 70, 4278 (1991).Google Scholar
3. Lie, D.Y.C., Song, J.H., Vantomme, A.V., Eisen, F., Nicolet, M-A., Cams, T.K., and Wang, K.L., J. Appl. Phys. 77, 2329 (1995)Google Scholar
4. Hong, Q. Z., Zhu, J. G., Mayer, J. W., Xia, W., and Lau, S. S., J. Appl. Phys. 71, 1768 (1992).Google Scholar
5. Lee, C., Haynes, T. E., Jones, K. S., Appl. Phys. Lett. 62, 501 (1993).Google Scholar
6. , Kringhøj, Elliman, R. G. and Hansen, J. L., Mater. Res. Soc. Proc. 321,461 (1994).Google Scholar
7. Atzmon, Z., Eisenberg, M., Shacham-Diamand, Y., Mayer, J. W., and Schfiffer, F., J. Appl. Phys. 75,377 (1994).Google Scholar
8. Lie, D.Y.C., Song, J.H., Nicolet, M-A. and Theodore, N.D., Appl. Phys. Lett. 66, 592 (1995)Google Scholar
9. Lie, D.Y.C., Cams, T.K., Theodore, N.D., Eisen, F., Nicolet, M-A., and Wang, K.L., Mater. Res. Soc. Proc. 321, 485 (1994)Google Scholar
10. Lie, D.Y.C., Theodore, N.D., Song, J.H., and Nicolet, M-A., J. Appl. Phys. (in press)Google Scholar
11. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
12. See for example, Chu, W.K., Mayer, J.W., and Nicolet, M.A., Backscattering Spectrometry, ch. 8, (Academic Press, New York, 1978)Google Scholar
13. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of ions in Matter, (Pergamon Press, London, 1985).Google Scholar
14. Binary Alloy Phase Diagrams, edited by Massalski, Thaddeus B., Vol. 1, (ASM International, Materials Park, 1990).Google Scholar
15. , Fisful, Heavily Doped Semiconductors, (Plenum Press, New York, 1969).Google Scholar
16. Venkataraman, V., Liu, C. W., and Sturm, J. C., J. Electron. Mater. 24, (1994).Google Scholar
17. Theodore, N. D., Tam, G., Whitfield, J., J. Christiansen and Steele, J., Mater. Res. Soc. Proc. 319 (in press).Google Scholar
18. Welser, J., Hoyt, J. L., and Gibbons, J. F., Jpn. J. Appl. Phys. 33, 2419 (1994).Google Scholar