Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:00:58.463Z Has data issue: false hasContentIssue false

Site Dependence of Electronic Structure of Gd Impurities in GaN

Published online by Cambridge University Press:  08 March 2011

Tawinan Cheiwchanchamnangij
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079
Atchara Punya
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079
Walter R. L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH-44106-7079
Get access

Abstract

Electronic structure calculations are reported for Gd in GaN on Ga as well as on N site and for pairs of Gd on neighboring Ga and N sites, using the full-potential linearized muffin-tin orbital method in the local spin density approximation with Hubbard U corrections (LSDA+U). The energy of formation for the N site is found to be much higher than for the Ga site even after relaxations are included. The GdN configuration is found to be at best metastable (in ZB). In WZ and in the pair configurations, the Gd is found to move toward an interstitial site leaving a nitrogen vacancy behind. The electronic structure of these structures and their magnetic moments are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Asahi, H., Zhou, Y. K., Hashimoto, M., Kim, M. S., Li, X. J., Emura, S., and Hasegawa, S., J. Phys.: Condens. Matter 16, S5555 (2004).Google Scholar
2. Dhar, S., Brandt, O., Ramsteiner, M., Sapega, V. F., and Ploog, K. H., Phys. Rev. Lett. 94, 037205 (2005).Google Scholar
3. Dhar, S., Kammermeier, T., Ney, A., Pérez, L., Ploog, K. H., and Wieck, A. D., Appl. Phys. Lett. 89, 062503 (2006)Google Scholar
4. Khaderbad, M. A., Dhar, S., Pérez, L., Ploog, K. H., Melnikov, A., Wieck, A. D., Appl. Phys. Lett. 91, 072514 (2007).Google Scholar
5. Liu, L., Yu, P. Y., Ma, Z. and Mao, S. S., Phys. Rev. Lett. 100, 127203 (2008).Google Scholar
6. Dev, P., Yue, X., and Zhang, P., Phys. Rev. Lett. 100, 117204 (2008).Google Scholar
7. Gohda, Y., and Oshiyama, A., Phys. Rev. B 78, 161201(R) (2008).Google Scholar
8. Mitra, C. and Lambrecht, W. R. L., Phys. Rev. B 80, 081202(R) (2009).Google Scholar
9. Kammermeier, T., Dhar, S., Ney, V., Manuel, E., Ney, A., Lo, K. H. F-Y., Melnikov, A., and Wieck, A. D., Phys. Stat. Solidi (a) 205, 1872 (2008).Google Scholar
10. Ney, A., Kammermeier, T., Manuel, E., Ney, V., Dhar, S., Ploog, K. H., Wilhelm, F., and Rogalev, A., Appl. Phys. Lett. 90, 252525 (2007).Google Scholar
11. Ney, A., Kammermeier, T., Ollefs, K., Ney, V., Ye, S., Dhar, S., Ploog, K. H., Röver, M., Malindretos, J., Rizzi, A., Wilhelm, F. and Rogalev, A., J. Magn. Magn. Mater. 322, 1162 (2010).Google Scholar
12. Methfessel, M., van Schilfgaarde, M., and Casalli, R. A., in Electronic structure and Physical Properties of Solids, The Uses of the LMTO Method, edited by Dreyssé, Hugues, Lecture Notes in Physics Vol. 535 (Springer-Verlag, Berlin 2000), p. 114.Google Scholar
13. Liechtenstein, A. I., Anisimov, V. I., and Zaanen, J., Phys. Rev. B 52, 5467(R) (1995).Google Scholar
14. Mitra, C. and Lambrecht, W. R. L., Phys. Rev. B 78, 134421 (2008).Google Scholar