Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T10:16:03.180Z Has data issue: false hasContentIssue false

Single Walled Carbon Nanotubes (SWNTs) as a Gas Sensor

Published online by Cambridge University Press:  15 March 2011

Bhabendra K. Pradhan
Affiliation:
Department of Physics, The Pennsylvania State University, 104 Davey Laboratory University Park, PA 16802-6300
Gamini U. Sumanasekera
Affiliation:
Department of Physics, The Pennsylvania State University, 104 Davey Laboratory University Park, PA 16802-6300
Clement K. W. Adu
Affiliation:
Department of Physics, The Pennsylvania State University, 104 Davey Laboratory University Park, PA 16802-6300
Hugo Romero
Affiliation:
Department of Physics, The Pennsylvania State University, 104 Davey Laboratory University Park, PA 16802-6300
Peter C. Eklund*
Affiliation:
Department of Physics, The Pennsylvania State University, 104 Davey Laboratory University Park, PA 16802-6300
*
Corresponding author, email: [email protected], Phone: 814 865 5233, Fax: 814 865 9851
Get access

Abstract

A thermoelectric “nano-nose” has been built from tangled bundles of single- walled carbon nanotubes (SWNT). The detector's thermoelectric response [.Delta]S is sensitive to the logarithmic energy derivative of the additional bundle resistivity ([.rho]a) which is identified with the adsorbed molecules. The response is therefore specific to the details of the interaction of the adsorbed molecule with the nanotube wall; even gases such as He, N2 and H2 can be easily detected. Plots of [Δ]S vs. [ρ]a are sensitive to whether oxidation or reduction of the tube wall is taking place, and to whether the gas molecule is physisorbed or chemisorbed. The utility of the sensor stems from the amphoteric nature of the SWNT, the quasi-one-dimensional character of the charge conduction and the high specific surface area of SWNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dresselhaus, M.S., Dresselhaus, G., Eklund, P. C., Science of Fullerenes and Carbon Nanotubes, (Academic Press, San Diego, 1996).Google Scholar
2. Iijima, S., Ichihashi, T., Nature 363, 603 (1993).Google Scholar
3. Bethune, D.S. et al. , Nature 363, 605 (1993).Google Scholar
4. Thess, R. et al. , Science 273, 483 (1996).Google Scholar
5. Tanaka, K., Yamabe, T., Fukui, K., The Science and Technology of Carbon Nanotubes, Elsevier, (Oxford, 1999).Google Scholar
6. Journet, C. et al. , Nature 388, 756(1997).Google Scholar
7. Odom, T. W., Huang, J. L., Kim, P., Liber, C. M., J. Phys. Chem. B 104, 2794, (2000).Google Scholar
8. Ugawa, A., Rinzler, A. G., Tanner, D. B., Phy. Rev. B 60, R11305, (1999).Google Scholar
9. Kazaoui, S. et al. , Phy. Rev. B 62, 1643, (2000).Google Scholar
10. Saito, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of carbon Nanotubes, (Imperial College Press, Singapore, 1998).Google Scholar
11. Rao, A. M., Eklund, P. C., Thess, A., Smalley, R. E., Nature 388, 257 (1997).Google Scholar
12. Lee, R. S., Kim, H. J., Fischer, J. E., Thess, A., Smalley, R. E., Nature 388, 255 (1997).Google Scholar
13. Williams, K. A., Eklund, P. C., Chem. Phys. Lett. 320, 352, (2000).Google Scholar
14. Stan, G. and Cole, M. W., J. Low Temp. Phys. 110, 539, (1998).Google Scholar
15. Dillon, A. C. et al. , Nature 386, 377 (1997).Google Scholar
16. Ye, Y. et al. , Appl. Phys. Lett. 74, 2307 (1999).Google Scholar
17. Liu, C. et al. , Science 286, 1127 (1999).Google Scholar
18. Heben, M. J., private communication.Google Scholar
19. Dresselhaus, M.S. and Eklund, P. C., Adv. In Phys. 49, 705 (2000).Google Scholar
20. Eklund, P. C., Mabatah, A. K., Rev. Sci. Instrum. 48, 775 (1977).Google Scholar
21. Sumanasekera, G. U., Grigorian, L. and Eklund, P. C., Meas. Sci. Technol. 11, 237 (2000).Google Scholar
22. Collins, P. G., Bradley, K., Ishigami, M., Zettl, A., Science, 287, 1801 (2000).Google Scholar
23. Sumanasekera, G. U., Adu, C. A. K., Fang, S., and Eklund, P. C., Phys. Rev. Lett. 85, 1096 (2000).Google Scholar
24. Kong, J. et al. , Science 287,622 (2000).Google Scholar
25. Barnard, R. D., Thermoelectricity in Metal and Alloys, (John Wiley & Sons, New York, 1972).Google Scholar
26. Jhi, S. H., Louie, S. G., Cohen, M. L., Phys. Rev. Lett. 85, 1710 (2000).Google Scholar
27. We thank Crespi, V. H., Cole, M. W., Williams, K. A. for their valuable suggestions and discussions. This work was supported by ONR (ONR N00014-99-1-0619), NSF (UK MRSEC No. DMR 98-09686).Google Scholar