Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:18:45.111Z Has data issue: false hasContentIssue false

Single Molecular Magnet - Gold Nanoparticle Composites

Published online by Cambridge University Press:  31 January 2011

Gopalan Balaji
Affiliation:
[email protected], LSU, CAMD, Baton Rouge, Louisiana, United States
Gudrun Bovenkamp
Affiliation:
[email protected], LSU, CAMD, Baton Rouge, Louisiana, United States
Vadim Palshin
Affiliation:
[email protected], LSU, CAMD, Baton Rouge, Louisiana, United States
Challa Kumar
Affiliation:
[email protected], LSU, CAMD, Baton Rouge, Louisiana, United States
Get access

Abstract

The past decade has witnessed a great interest in single molecule magnets (SMM) especially those based on manganese such as Mn12-acetate due to their potential applications in ultrahigh density data storage and quantum computing devices. The focus so far has been in finding different derivatives of Mn or other complexes based on transition elements in order to raise the blocking temperature of single-molecule magnets (SMMs). Herein we propose a fundamentally new approach of generating new category of SMMs through formation of composite structures by binding SMMs on to nanoparticles. In this report, we present the synthesis and characterization of single molecular magnet - gold nanoparticle composite- Mn12-cysteinate functionalized gold nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Aromí, G., and Brechin, E. K., Struct. Bond. 1 (2006).Google Scholar
2 Waldmann, O., Inorg. Chem. 46(24), 10035 (2007).Google Scholar
3 Cornia, A., Fabretti, A. C., Pacchioni, M., Zobbi, L., Bonacchi, D., Caneschi, A., Gatteschi, D., Biagi, R., Del Pennino, U., Renzi, V. De, Gurevich, L., and Zant, H. S. J. Van der, Angew. Chem. Int. Ed. 42, 1645, (2003).Google Scholar
4 Steckel, J., Persky, N. S., Martinez, C. R., Barnes, C. L., Fry, E. A., Kulkarni, J., Burgess, J. D., Pacheco, R. B., and Stoll, S. L., Nano lett. 4, 399, (2004).Google Scholar
5 Abdi, A. Nail, Bucher, J. P., Resa, P., Toulemonde, O., Drillon, M., and Gerbier, Ph., J. Appl. Phys. 95, 7345, (2004).Google Scholar
6 Condorelli, G. G., Motta, A., Fragala, I. L., Giannazzo, F., Raineri, U., Caneschi, A., and Gatteschi, D., Angew. Chem. Int. Ed. 43, 4081 (2004).Google Scholar
7 Liz, T., Acta Cryst. B 36, 3042, (1980).Google Scholar
8 Gross, G. M., Nelson, D. A., Grate, J. W., and Synovec, R. E., Anal. Chem. 75, 4558 (2003).Google Scholar
9 Ravel, B., and Newville, M., J. Sync. Rad. 12, 537, (2005).Google Scholar
10 Yiu, Y.M., Zhang, Peng, and Sham, T.K., Nanotech. 3, 183, (2003).Google Scholar
11 Kataby, G., Koltypin, Yu., Rothe, J., Hormes, J., Felner, I., Cao, X., and Gedanken, A., Thin Solid Films 333, 41, (1998).Google Scholar
12 Prange, A., and Modrow, H., Rev. Environ. Sci. Biotechnol. 1, 259, (2002).Google Scholar