Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T03:12:11.906Z Has data issue: false hasContentIssue false

Single Carrier Initiated Low Excess Noise Mid-Wavelength Infrared Avalanche Photodiode using InAs-GaSb Strained Layer Superlattice

Published online by Cambridge University Press:  01 February 2011

Koushik Banerjee
Affiliation:
[email protected], University of Illinois at Chicago, Lab for Photonics and Magnetics (ECE), 1039 S.Racine Ave, Apt 2R, Chicago, IL, 60607, United States
Shubhrangshu Mallick
Affiliation:
[email protected], University of Illinois at Chicago, Lab for Photonics and Magnetics (ECE), Chicago, IL, 60607, United States
Siddhartha Ghosh
Affiliation:
[email protected], University of Illinois at Chicago, Lab for Photonics and Magnetics (ECE), Chicago, IL, 60607, United States
Elena Plis
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials (ECE), Albuquerque, NM, 87106, United States
Jean Baptiste Rodriguez
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials (ECE), Albuquerque, NM, 87106, United States
Sanjay Krishna
Affiliation:
[email protected], University of New Mexico, Center for High Technology Materials (ECE), Albuquerque, NM, 87106, United States
Christoph Grein
Affiliation:
[email protected], University of Illinois at Chicago, Microphysics Laboratory (Physics), Chicago, IL, 60607, United States
Get access

Abstract

Mid-wavelength infrared (MWIR) avalanche photodiodes (APDs) were fabricated using Indium Arsenide- Gallium Antimonide (InAs-GaSb) based strain layer superlattice (SLS) structures. They were engineered specifically to have either electron or hole dominated ionization. The gain characteristics and the excess noise factors were measured for both devices. The electron dominated p+-n-n APD with a cut-off wavelength of 4.13 μm at 77 K had a maximum multiplication gain of 1800 measured at -20 V while that of the hole dominated n+-p--p structure with a cut-off wavelength of 4.98 μm at 77 K was 21.1 at -5 V at 77 K. Excess noise factors were measured between 1-1.2 up to a gain of 800 and between 1-1.18 up to a gain of 7 for electron and hole dominated APDs respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kinch, M. A. Beck, J. D. Wan, C-F, Ma, F. and Campbell, J. J. Electronic Mat. 33 630 (2004).Google Scholar
2. Beck, J. D. Wan, C-F., Kinch, M. J. Robinson Proc. SPIE 4454, 188 (2001).Google Scholar
3. Beck, J. Wan, C. Kinch, M. Robinson, J. Mitra, P. Scritchfield, R. Ma, F. and Campbell, J. J. Elec. Mat. 35 1166 (2006).Google Scholar
4. Reine, M. B. Marciniec, J. W. Wong, K.K. Parodos, T. Mullarkey, J. D. Lamarre, P. A. Tobin, S. P., Gustavsen, K. and Williams, G. Proc. SPIE 6294, 629403 (2006).Google Scholar
5. Destefanis, G. and Tribolet, P. Proc. SPIE 6542, 723467 (2007).Google Scholar
6. Perrais, G. Gravrand, O. Baylet, J. Destefanis, G. and Rothman, J. J. Elec. Mat. 36, 963 (2007).Google Scholar
7. Mallick, S. Ghosh, S. Velicu, S. Zhao, J. in press IEEE Journal of Electronic Material.Google Scholar
8. Mallick, S. Ghosh, S. Velicu, S. Zhao, J. Proc. of SPIE, 6660, 66600Y (2007)Google Scholar
9. Osbourn, G. C. J. Vac. Sci. Technol., B2, 176 (1984).Google Scholar
10. Smith, D. L. and Mailhiot, C. J. Appl. Phys., 62, 2545 (1987).Google Scholar
11. Grein, C. H. Young, P. M. and Ehrenreich, H. Appl. Phys. Lett,. 61, 2905 (1992).Google Scholar
12. Youngdale, E. R. Meyer, J. R. Hoffman, C. A. Bartoli, F. J. Grein, C. H. Young, P.M. Ehrenreich, H., Miles, R. H., and Chow, D. H. Appl. Phys. Lett.,. 64,. 3160 (1994).Google Scholar
13. Grein, C. H. Young, P. M. Flatte, M. E. and Ehrenreich, H. J. Appl. Phys., 78, 7143 (1987).Google Scholar
14. Mohseni, H. Razeghi, M. Brown, G. J. Park, Y. S. Appl. Phys. Lett, 78, 2107 (2001).Google Scholar
15. Wei, Y. Gin, A. Razeghi, M., and Brown, G. J. Appl. Phys. Lett., 81, 3675 (2002).Google Scholar
16. Wei, Y. Hood, A. Yau, H. Gin, A. Razeghi, M, Tidrow, M. and Nathan, V. Appl. Phys. Lett, 86, 233106 (2005).Google Scholar
17. Mallick, S. Banerjee, K. Ghosh, S. Rodriguez, J.B. and Krishna, S. IEEE Photonics Technology Letters, 19 1843 (2007).Google Scholar
18. Mallick, S. Banerjee, K. Rodriguez, J.B. Krishna, S. Ghosh, S. and Grein, C. H. Appl. Phys. Lett, 91, 241111 (2007).Google Scholar
19. Mallick, S. Banerjee, K. Ghosh, S. Rodriguez, J. B. Krishna, S. IEEE LEOS Annual Meeting -2007.Google Scholar
20. McIntyre, R. J. IEEE Trans. Electron Devices, Ed-13, 164 (1966)Google Scholar
21. Saleh, B. E. A. Hayat, M. M. and Teich, M. C. IEEE Trans. Electron Devices, 37, 1976 (1990).Google Scholar
22. Hayat, M. M. Sargeant, W. L. and Saleh, B. E. A. IEEE J. Quantum Electron., 28, 1360 (1992).Google Scholar