Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:19:41.044Z Has data issue: false hasContentIssue false

Simulations of Filled Polymers on Multiple Length Scales

Published online by Cambridge University Press:  21 March 2011

Francis W. Starr
Affiliation:
Polymers Division and Center for Theoretical and Computational Materials Science, National Institute of Standards and Technology, Gaithersburg, MD 20899
Sharon C. Glotzer
Affiliation:
Polymers Division and Center for Theoretical and Computational Materials Science, National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

We present simulation results of the effect of nanoscopic and micron-sized fillers on the structure, dynamics and mechanical properties of polymer melts and blends. At the smallest length scales, we use molecular dynamics simulations to study the effect of a single nano-filler on the structure and dynamics of the surrounding melt. We find a tendency for polymer chains to be elongated and flattened near the filler surface. Additionally, the simulations show that the dynamics of the polymers can be dramatically altered by the choice of polymer-filler interactions. We use time-dependent Ginzburg-Landau simulations to model the mesoscale phase-separation of an ultra-thin blend film in the presence of an immobilized filler particle. These simulations show the influence of filler particles on the mesoscale blend structure when one component of the blend preferentially wets the filler. Finally, we present some preliminary finite element calculations used to predict the effect of mesoscale structure on macroscopic ultrathin film mechanical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rererences

1. Wypych, G., Handbook of Fillers (ChemTec Publishing, 1999).Google Scholar
2. Roco, M.C., Williams, S., and Alivisatos, P. (Eds.), Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology in the Next Decade (Kluwer Academic Publishers, 2000).Google Scholar
3. Giannelis, E.P., Adv. Mater. 8, 29 (1996).Google Scholar
4. Schwab, J.J. and Lichtenhan, J.D., Appl. Organomet. Chem. 12, 707(1998).Google Scholar
5. Feher, F.J., Soulivong, D., Eklund, A.G., and Wyndham, K.D., Chem. Commun. 13, 1185 (1997).Google Scholar
6. Allen, M.P. and Tildesley, D.J., Computer simulation of liquids (Oxford, 1987).Google Scholar
7. Starr, F.W., Schrθder, T.B., and Glotzer, S.C., cond-mat/0007486. (2000).Google Scholar
8. Glotzer, S.C., Ann. Rev. in Comp. Phys. 2, 1 (1995).Google Scholar
9. Lee, B.P., Douglas, J.F., Glotzer, S.C., Phys. Rev. E 60, 5812 (1999).Google Scholar
10. Reddy, J.N., An introduction to the finite element method (Mc-Graw-Hill, 1993).Google Scholar
11. Glotzer, S.C., Han, C., and Fuller, E., unpublished.Google Scholar
12. Glotzer, S.C. and Cummings, P.T., unpublished.Google Scholar
13. Lin, E.K., Kolb, R., Satija, S.K., and Wu, W.L., Macromolecules 32, 3753 (1999).Google Scholar
14. Cousin, P. and Smith, P., J. Poly. Sci. B: Poly. Phys. 32, 459. (1994).Google Scholar
15. Tsagaropoulos, G. and Eisenberg, A., Macromolecules 28, 6067 (1995).Google Scholar
16. Sombatsompop, N., J. Appl. Poly. Sci. 74, 1129 (1999).Google Scholar
17. Forrest, J.A. and Jones, R.A.L., in Polymer surfaces, interfaces, and thin films, eds. Karim, A. and Kumar, S. (World Scientific, 2000) pp. 251294.Google Scholar
18. Jones, R.L., Kumar, S.K., Ho, D.L., Briber, R.M., and Russell, T.P., Nature 400, 146 (2000).Google Scholar
19. Kraus, J., Müller-Buschbaum, P., Kuhlmann, T., Schubert, D.W., and Stamm, M., Europhys. Lett. 49, 210 (2000).Google Scholar
20. Kumar, S.K., Vacatello, M., and Yoon, D.Y., J. Chem. Phys. 89, 5206 (1989); Macromolecules 23, 2189 (1990).Google Scholar
21. Wang, J.-S. and Binder, K., J. Phys. I France 1, 1583 (1991).Google Scholar
22. Wallace, W.E., van, J.H. Zanten, Wu, W.L., Phys. Rev. E 52, 3329 (1995).Google Scholar
23. van, J.H. Zanten, Wallace, W.E., Wu, W.L., Phys. Rev. E 53, 2053 (1996).Google Scholar
24. Forrest, J.A., Dalnoki, K.-Veress, and Dutcher, J.R., Phys. Rev. E 56, 5705 (1997).Google Scholar
25. Forrest, J.A., Svanberg, C., Revesz, K., Rodahl, M., Torell, L.M., Kasemo, B., Phys. Rev. E 58, 1226 (1998).Google Scholar
26. Anastasiadis, S.H., Karatasos, K., Vlachos, G., Manias, E., and Giannelis, E.P., Phys. Rev. Lett. 84, 915 (2000).Google Scholar
27. Bird, R.B., Curtiss, C.F., Armstrong, R.C., and Hassager, O., Dynamics of Polymeric Liquids: Kinetic Theory, Vol. 2. (John Wiley and Sons, 1987).Google Scholar
28. Bennemann, C., Paul, W., Baschnagel, J., and Binder, K., J. Phys. Cond. Mat. 11, 2179 (1999).Google Scholar
29. Bennemann, C., Donati, C., Baschnagel, J., and Glotzer, S.C., Nature 399, 246 (1999).Google Scholar
30. Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids (Academic Press, 1986).Google Scholar
31. Debenedetti, P.G., Metastable Liquids (Princeton Univ. Press 1996).Google Scholar
32.Confinement may play an additional role in Tg shifts in both filled polymers and ultra-thin films. The heterogeneous nature of the dynamics of polymer melts gives rise to a potentially large characteristic length scale near Tg [28,29,33,34]; thus confinement my shift Tg in a fashion similar to the way finite size shifts Tc in conventional critical phenomena; a study of this is underway.Google Scholar
33. Glotzer, S.C., J. Non-Cryst. Solids 274, 342 (2000).Google Scholar
34. Ediger, M.D., Ann. Rev. Phys. Chem. (in press).Google Scholar
35. Gibbs, J.H., and DiMarzio, E.A., J. Chem. Phys. 28, 373 (1958).Google Scholar
36. Adam, G. and Gibbs, J.H., J. Chem. Phys. 43, 139 (1965).Google Scholar
37. Scala, A., Starr, F.W., Nave, E. La, Sciortino, F., and Stanley, H.E., Nature 406, 166 (2000).Google Scholar
38. Sastry, S., Phys. Rev. Lett. 85, 590 (2000).Google Scholar
39. Starr, F.W.et al., Phys. Rev. E, 63 in press (2001).Google Scholar
40. Varnik, F., Baschnagel, J., and Binder, K., J. Phys. IV 10, 239 (2000).Google Scholar
41. Torres, J.A., Nealey, P.F., Pablo, J.J. de, Phys. Rev. Lett. 85, 3221 (2000).Google Scholar
42. Cahn, J.W., , J.E. and , Hilliard, J. Chem. Phys. 28, 258 (1958).Google Scholar
43. Cahn, J.W., Acta Metall. 9, 795 (1961); ibid 10, 179 (1962); J. Appl. Phys. 34, 3581 (1963).Google Scholar
44. Glotzer, S.C. and Coniglio, A., Phys. Rev. E 50, 4241 (1994).Google Scholar
45. Glotzer, S.C., DiMarzio, E., and Muthukumar, M., Phys. Rev. Lett. 74, 2034 (1995).Google Scholar
46. Christensen, J., Elder, K., and Fogedby, H.C., Phys. Rev. E 54, 2212 (1996).Google Scholar
47. Motoyama, M., J. Phys. Soc. Japan 65, 1894. (1996).Google Scholar
48. Puri, S., Frisch, H.L., J. Phys. A 27, 6027 (1994).Google Scholar
49. Lapena, A.M., Glotzer, S.C., Langer, S.A., and Liu, A.J., Phys. Rev. E 60, 29 (1999).Google Scholar
50. Maurits, N.M., Sevink, G.J.A., Zvelindovsky, A.V., Fraaije, J.G.E.M., Macrcolecules 32, 7674 (1999).Google Scholar
51. Ginzburg, V.V., Peng, G., Qiu, F., and Balazs, A.C., Phys. Rev. E 60, 4352 (1999).Google Scholar
52. Israels, R.et al., J. Chem. Phys. 102, 8149 (1995).Google Scholar
53.G.Sevink, J.A., Zvelindovsky, A.V., Vlimmeren, B.A.C. van, Mauritis, N.M., and Fraaije, J.G.E.M., J. Chem. Phys. 110, 2250 (2000).Google Scholar
54. Karim, A.et al., Phys. Rev. E 49, 6273 (1998).Google Scholar
55. Peng, G.W., Qiu, F., Ginzburg, V.V., Jasnow, D., and Balazs, A.C., Science 288, 1802 (2000).Google Scholar
56. Qiu, F.et al., Langmuir 15, 4952 (1999).Google Scholar
57. Freed, K.F., J. Chem. Phys. 105, 10572 (1996).Google Scholar
58. Brazhnik, P.K., Freed, K.F., and Tang, H., J. Chem. Phys., 101, 9143 (1994).Google Scholar
59. Mills, D.L., Phys. Rev. B 3, 3887 (1971).Google Scholar