No CrossRef data available.
Article contents
SIMULATION OF NANOSCALE ETCHING FOR NANOTUBE AND GRAPHENE DEVICES
Published online by Cambridge University Press: 24 May 2012
Abstract
In order to find an efficient method to etch nano-carbon materials by hydrogenation in a controlled manner, we have studied hydrogen-atom adsorption on various deformed nanotubes using computer simulations based on the density-functional theory. The nanotube with an atomic lack is compared to a deformed tube with the Stone-Wales defect and a twisted tube wall. Similar to the known experimental etching condition for graphene, an atomic lack is effective to accumulate hydrogen atoms around the defect. Compared to the flat graphene, however, nanotube walls with curvature allow on-top adsorption of a hydrogen atom and selectivity in the hydrogenated site becomes worse. To achieve a controlled etching process, usage of a tungsten tip which realizes focused hydrogenation is proposed for natotubes and curved graphene.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2012