Article contents
Simulation of Mechanical Elongation and Compression of Nanostructures
Published online by Cambridge University Press: 14 April 2016
Abstract
We present a set of Molecular Dynamics simulations of the axial elongation of gold nanowires, and the compression of silver decahedral nanowires by a carbon AFM tip. We used Sutton and Chen multibody potentials to describe the metallic interactions, a Tersoff potential to simulate the carbon-carbon interactions, and a 6-12 Lennard-Jones potential to describe the metal-carbon interactions. In the elongation simulations, gold nanowires were subjected to strain at several rates, and we concentrated our attention in the specific case of a wire with an atomistic arrangement based on the intercalation of icosahedral motifs forming a Boerdijk-Coxeter (BCB) spiral, and compare it against results of nanowires with fcc structure and (001), (011), and (111) orientations. We found that the BCB nanowire is more resistant to breakage than the fcc nanowires. In the simulations of lateral compression, we made a strain analysis of the trajectories, finding that when a gold decahedral nanowire is compressed by the AFM tip in a direction parallel to a (100) face, the plastic deformation regime is considerably larger than in the case of compression exerted in a direction parallel to a twin plane, where the fracture of the wire comes almost immediately after the elastic range ends. The strain distribution and elastic response in the compression of nanoparticles with different geometries is also discussed.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 1
- Cited by