Published online by Cambridge University Press: 15 February 2011
A Monte Carlo simulation procedure is applied to simulate non-uniform grain growth during directional annealing. The assumed temperature profile consists of a small, finite size hot zone which blends smoothly into cold zones ahead and behind the hot zone. The hot zone is assumed to move with a constant velocity. The influence of the ratio of hot zone to cold zone temperatures and the velocity of the temperature field are investigated. The grain size is analyzed as a function of these variables. We find that very high aspect ratio grains (long axis parallel to the thermal field velocity vector) are possible within a restricted velocity window. These results are analyzed in terms of an analytic model based upon conventional grain growth laws.