Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T23:21:32.281Z Has data issue: false hasContentIssue false

A Simple Phenomenological Model for Growth of Nanodots with “Magical Sizes” Stabilized by Quantum Size Effect

Published online by Cambridge University Press:  01 February 2011

Heikki Juha Tapani Ristolainen
Affiliation:
[email protected], University of Helsinki, Department of Physics, PL 64 (Gustaf Hällströmin katu 2a), Helsinki, 00014, Finland
Ismo Koponen
Affiliation:
[email protected], University of Helsinki, Department of Physics, PL 64 (Gustaf Hällströmin katu 2a), Helsinki, 00790, Finland
Get access

Abstract

In deposition of Pb atoms on Cu(111) or Si(111) surface growth of tower-shaped nanostructures is observed. This nanotower growth is caused by structure height dependent energetics, resulting from the quantum size effects (QSE) due to the vertical electron confinement in nanotowers. In this report we present a “wedding cake” -type phenomenological model describing the time evolution of nanostructures. The model reproduces the typical morphologies of nanotowers. The results demonstrate that nanohuts are formed by downward mass currents, due to the downward diffusion of adatoms. Also the stable layers due to the quantum size effects (QSE) can be modelled with a suitable choice of model parameters. In the case of altering stabilities of layers, simultaneous bi-layer growth takes place. The results are in agreement with experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Otero, R., Parga, A. L. Vázquez de and Miranda, R., Phys. Rev. B 66, 115401 (2002).Google Scholar
2. Ogando, E., Zabala, N., Chulkov, E.N. and Puska, M.J., Phys. Rev. B 69, 153410 (2004).Google Scholar
3. Hupalo, M. and Tringides, M.C., Phys. Rev. B 65, 115406 (2002).Google Scholar
4. Menzel, A., Kammler, M., Conrad, E.H., Yeh, V., Hupalo, M. and Tringides, M.C., Phys. Rev. B 67, 165314 (2003).Google Scholar
5. Morgenstern, K., Laegsgaard, E. and Besenbacher, F., Phys. Rev. Lett. 94, 166104 (2005).Google Scholar
6. Jeffrey, C.A., Conrad, E.H., Feng, R., Hupalo, M., Kim, C., Ryan, P.J., Miceli, P.F. and Tringides, M., Phys. Rev. Lett. 96, 106105 (2006).Google Scholar
7. Czoschke, P., Hong, H., Basile, L., and Chiang, T.-C., Phys. Rev. Lett. 93, 036103 (2004).Google Scholar
8. Upton, M.H., Wei, C.M., Chou, M.Y., Miller, T. and Chiang, T.-C., Phys. Rev. Lett. 93, 026802 (2004).Google Scholar
9. Jeong, H.-C. and Williams, E. D., Surface Science Reports 34, 171294 (1999).Google Scholar
10. Israeli, N. and Kandel, D., Phys. Rev. B 60, 5946 (1999).Google Scholar
11. Degawa, M., Thürmer, K. and Williams, E.D., Phys. Rev. B 74, 155432 (2006).Google Scholar
12. Krug, J., Politi, P. and Michely, T., Phys. Rev. B 61, 14037 (2000).Google Scholar
13. Krug, J., Physica A 313, 4782 (2002).Google Scholar
14. Voigtländer, B. and Weber, T., Phys. Rev. B 54, 7709 (1996).Google Scholar
15. Fu, Q. and Wagner, T., Phys. Rev. Lett. 90, 106105 (2003).Google Scholar