Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:28:03.607Z Has data issue: false hasContentIssue false

Silicon Carbide Growth: C/Si Ratio Evaluation and Modeling

Published online by Cambridge University Press:  01 February 2011

Michel Pons
Affiliation:
[email protected], INPGrenoble, CNRS-LTPCM, 1130 rue de la Piscine, BP 75, Saint Martin D'Heres, Rhone-Alpes, 38402, France
Shin-Ichi Nishizawa
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Japan, Ibaraki 305-8568, Japan
Peter Wellmann
Affiliation:
[email protected], Erlangen University, Materials Department 6, Martensstr. 7, Erlangen, Germany, 91058, Germany
Elisabeth Blanquet
Affiliation:
[email protected], INPGrenoble, CNRS, 1130 rue de la Piscine, BP 75, Saint Martin D'Heres, Rhone-Alpes, 38402, France
Didier Chaussende
Affiliation:
[email protected], INPGrenoble, CNRS, 1130 rue de la Piscine, BP 75, Saint Martin D'Heres, Rhone-Alpes, 38402, France
Jean Marc Dedulle
Affiliation:
[email protected], INPGrenoble, CNRS, 1130 rue de la Piscine, BP 75, Saint Martin D'Heres, Rhone-Alpes, 38402, France
Get access

Abstract

Modeling and simulation of the SiC growth processes, Physical Vapor Transport (PVT), Chemical Vapor Deposition (CVD) and hybrid techniques, are sufficiently mature to be used as a training tool for engineers as well as a growth machine design tool, e.g. when building new process equipment or up-scaling old ones. It is possible (i) to simulate accurately temperature and deposition distributions, as well as doping (ii) to quantify the limiting phenomena, (iii) to understand the important role of different precursors in CVD and hydrogen additions in PVT. The first conclusion of this paper is the importance of the "effective" C/Si ratio during CVD epitaxy in hot-wall reactors and its capability to explain the doping concentrations. The second conclusion is the influence of the C/Si ratio in alternative bulk growth technique involving gas additions. Preliminary results show that fine tuning of H2 or precursor additions allow a better control of concentrations of residual and intentional doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Larkin, D.J., Phys. Stat. Sol.(b) 202, 305 (1997).Google Scholar
2 Via, F. La, Galvagno, G., Foti, G., M.Mauceri, Leone, S., Pistone, G., Abbondanza, G., Veneroni, A., Masi, M., Valente, G.L. and Crippa, D., “4H SiC epitaxial growth with chlorine addition”, accepted Chemical Vapor Deposition (2006).Google Scholar
3 Veneroni, A. and Masi, M., “Gas phase and surface kinetics of epitaxial silicon carbide growth involving chlorine species”, accepted Chemical Vapor Deposition (2006).Google Scholar
4 Nigam, S., Chung, H.J., Polyakov, A.Y., Fanton, M.A., Weiland, B.E., Snyder, D.W. and Skowronski, M., J. Crystal Growth 284, 112 (2005).Google Scholar
5 Fanton, M. A., Li, Q., Polyakov, A. Y., Skowronski, M., Cavalero, R., and Ray, R., J.Cryst. Growth 287, 339343 (2006).Google Scholar
6 Straubinger, T. L., Bickermann, M., Weingartner, R., Wellmann, P. J., and Winnacker, A., J.Cryst. Growth 240, 117 (2002).Google Scholar
7 Chaussende, D., Baillet, F., Charpentier, L., Pernot, E., Pons, M., and Madar, R., J. Electrochem. Soc. 150, G653 (2003).Google Scholar
8 Chaussende, D., Ucar, M., Auvray, L., Baillet, F., Pons, M., and Madar, R., Crystal Growth & Design 5, 1539 (2005).Google Scholar
9 Kojima, K., Suzuki, T., Kuroda, S., Nishio, J. and Arai, K., Jpn.J.Appl.Phys., 42, L637 (2003).Google Scholar
10 Kimoto, T., Itoh, A. and Matsunami, H., Appl.Phys.Lett. 67, 2385 (1995); H.Fujiwara, K.Danno, T.Kimoto, T.Tojo, H.Matsunami, 281, 370 (2005).Google Scholar
11 Forsberg, U., Danielsson, Ö., Henry, A., Linnarsson, M.K. and Janzen, E., J.Cryst. Growth 253, 340 (2003).Google Scholar
12 Schöner, A., in Silicon Carbide, edited by Choyke, W.J., Matsunami, H. and Pensl, G., (Springer 2003), 229.Google Scholar
13 Löfgren, P.M., Ji, W., Hallin, C. and Gu, C.Y., J.Electrochem.Soc. 147, 164 (2000).Google Scholar
14 Vorobe'v, A.N., Karpov, S. Yu, Bogdanov, M.V., Komissarov, A.E., Bord, O.V., Zhmakin, A.I. and Makarov, Yu N., Comp.Mat.Sci. 24, 520 (2002).Google Scholar
15 Danielsson, Ö., Henry, A., Janzen, E., J.Crystal Growth 243, 170 (2002).Google Scholar
16 Danielsson, Ö., Forsberg, U. and Janzen, E., J.Crystal Growth 250, 471 (2003).Google Scholar
17 Meziere, J., Ucar, M., Blanquet, E., Pons, M., Ferret, P. and Cioccio, L. Di, J. Cryst. Growth 267, 436 (2004).Google Scholar
18 Nishizawa, S., Kojima, K., Kuroda, S., Arai, K. and Pons, M., J.Cryst. Growth 275, e515 (2005).Google Scholar
19 Nishizawa, S. and Pons, M., Microelectric Eng. 83, 100 (2006).Google Scholar
20 Nishizawa, S. and Pons, M., Mater.Sci.Forum 483–485, 53 (2005).Google Scholar
21 Muller, S. G., Glass, R. C., Hobgood, H. M., Tsvetkov, V. F., Brady, M., Henshall, D., Malta, D., Singh, R., Palmour, J., and Carter, C. H., Mat. Sci. Eng. B80, 327 (2001).Google Scholar
22 Ohtani, N., Fujimoto, T., Katsuno, M., Aigo, T., and Yashiro, H., J.Cryst. Growth 237–239, 1180 (2002).Google Scholar
23 Hofmann, D., Bickermann, M., Eckstein, R., Kolbl, M., Muller, S. G., Schmitt, E., Weber, A., and Winnacker, A., J.Cryst. Growth 198/199, 1005 (1999).Google Scholar
24 Ellison, A., Magnusson, B., Son, N. T., Storasta, L., and Janzen, E., Mater.Sci.Forum 433–436, 3338 (2003).Google Scholar
25 Nishizawa, S., Kato, T., Kitou, Y., Oyanagi, N., Hirose, F., Yamaguchi, H., Bahng, W., and Arai, K., Mater.Sci.Forum 457–460, 29 (2004).Google Scholar
26 Wellmann, P., Desperrier, P., Mueller, R., Straubinger, T., Winnacker, A., Baillet, F., Blanquet, E., Dedulle, J.M. and Pons, M., J.Cryst.Growth 275(1-2), e555 (2005).Google Scholar