Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T04:12:58.721Z Has data issue: false hasContentIssue false

Silicide Contacts for Sub-0.25 μm Devices

Published online by Cambridge University Press:  10 February 2011

L. J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
S. L. Cheng
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
S. M. Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Y. C. Peng
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
H. Y. Huang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
L. W. Cheng
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Low resistivity TiSi2, CoSi2 and NiSi are the three primary candidates for metal contacts in sub-0.25 μ m devices. In the present paper, we review recent progress in the investigations of lowresistivity contacts, which include enhanced formation of C54-TiSi2 on (001)Si by tensile stress, high temperature sputtering, and interposing Mo or TiN layer, improved thermal stability of C54-TiSi2 by the addition of N2 during Ti sputtering or N implantation in (001)Si, self-aligned formation of CoSi2 on the selective epitaxial growth silicon layer on (001)Si, effects of stress on the epitaxial growth of CoSi2 on (001 )Si, improvement of thermal stability of CoSi2 by nitrogen ion implantation or high temperature sputtering, and improvement of thermal stability of NiSi by nitrogen ion implantation or compressive stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wong, C.Y., Wang, L.K., McFarland, P.A., and C Ting, Y., J. Appl. Phys. 60, 243 (1983).10.1063/1.337688Google Scholar
2. Gambino, J. P. and Colgan, E. G., Mater. Chem. Phys. 52, 99 (1998).Google Scholar
3. Murarka, S.P., Mater. Res. Soc. Symp. Proc. 320, 3 (1994).Google Scholar
4. Lur, W. and Chen, L.J., J. Appl. Phys. 66, 3604 (1989).Google Scholar
5. Ono, M., Saito, M., Yoshitomi, T., Fiegna, C., Ohguro, T., and Iwai, H., IEEE IEDM 1995 Tech. Digest, 119 (1995).Google Scholar
6. Kuroi, T., Shimizu, S., Furukawa, A., Komori, S., Kawasaki, Y., Kusunoki, S., Okumura, Y., Inuishi, M., Tsubouchi, N., and Horie, K., Digest of 1995 Symposium on VLSI Technology, 19 (1995).Google Scholar
7. Shimizu, S., Kuroi, T., Kawasaki, Y., Kusunoki, S., Okumura, Y., Inuishi, M., and Miyoshi, H., IEEE IEDM 1995 Tech. Digest, 859 (1995).Google Scholar
8. Sedgwick, T.O., Michel, A.E., Deline, V R., Cohen, S.A., and Lasky, J.B., J. Appl. Phys. 63, 1452 (1988).10.1063/1.339926Google Scholar
9. Ajimera, A.C. and Rozgonyi, G.A., Appl. Phys. Lett. 49, 1269 (1986).10.1063/1.97382Google Scholar
10. Murakami, T., Kuroi, T., Kawasaki, Y., Inuishi, M., and Matsui, Y., Nucl. Instrim. Methods 121, 257 (1997).10.1016/S0168-583X(96)00583-6Google Scholar
11. Tsai, J. Y., Osburn, C. M. and Hsia, S. L., Mater. Res. Soc. Symp. Proc. 402, 245 (1996).Google Scholar
12. Wong, S. S., Bradbury, D. R., Chen, D. C., and Chiu, K. Y., IEDM Tech. Dig. 634 (1984).Google Scholar
13. Pfiester, J. R., Sivan, R. D., Liaw, H. M., Seelbach, C. A., and Gunderson, C. D., IEEE Electron Device Lett. EDL–11, 365 (1990).10.1109/55.62957Google Scholar
14. Waite, A., Evans, A. G. R., and Afshar-Hanaii, N., Electronics Letters 30, 1455 (1994).10.1049/el:19940932Google Scholar
15. Lasky, J.B., Nakos, J- S., Cain, O.J., and Geiss, P.J., IEEE Trans. Electron Devices, ED–38 (1991)262.10.1109/16.69904Google Scholar
16. Mann, R. W., Miles, G. L., Knotts, T. A., and Rakowski, D. W., Clevenger, L. A., Harper, J. M. E., D'Heurle, F. M., and Cabral, C., Jr., Appl. Phys. Lett. 67 (1995) 18.10.1063/1.115364Google Scholar
17. Li, X. - H., Carlsson, R. A., Gong, S. F., and Hentzell, H. T. G., J. Appl. Phys. 72 (1992) 514.Google Scholar
18. Kuwano, H., Phillips, J. R., and Mayer, J. W., Appl. Phys. Lett. 56 (1990) 440.10.1063/1.103295Google Scholar
19. Mouroux, A., Zhang, S. - L., Kaplan, W., Nygren, S., Ostling, M., and Petersson, C. S., Appl. Phys. Lett. 69 (1996) 975.10.1063/1.117100Google Scholar
20. Murarka, S. P., Metallization: Theory and Practice for VLSI and ULSI, (Butterworth-Heinemann, Boston, 1993) p. 82.Google Scholar
21. Shen, Y. L., Suresh, S., and Blench, I. A., J. Appl. Phys. 80 (1996) p. 1388.10.1063/1.362938Google Scholar
22. Nicolet, M. A. and Lau, S. S., “Formation and Characterization of Transition-Metal Silicides”, in Materials and Process Characterization. Edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983) p.329.Google Scholar
23. Shewmon, P. G., Diffusion in Solid, 2nd edition, (The Metallurgical Society, Warrendale, PA, 1989) p.84 Google Scholar
24. Yew, J. Y., Chen, L. J., and NaKamura, K., Appl. Phys. Lett. 69, 999 (1996).10.1063/1.117108Google Scholar
25. Hsu, H. F., Chen, L. J., and Chu, J. J., J. Appl. Phys. 69, 4282 (1991).10.1063/1.348400Google Scholar
26. Chang, C. S., Nieh, C. W., and Chen, L. J., Appl. Phys. Lett. 50, 259 (1987).10.1063/1.98218Google Scholar
27. Fujii, K., Tung, R. T., Eaglesham, D. J., Kikuta, K. and Kikkawa, T., Mater. Res. Soc. Symp. Proc. 402, 83 (1996).10.1557/PROC-402-83Google Scholar
28. Liang, J. M., and Chen, L. J., Appl. Phys. Lett. 64, 1224 (1994).Google Scholar
29. Fan, G. Y. and Cowley, J. M., Ultramicroscopy 17, 345 (1985).Google Scholar
30. Frank, J., Computer Processing of Electron Microscopy Images (Springer, Berlin, 1980), p. 187.10.1007/978-3-642-81381-8_5Google Scholar
31. Chen, L. J., Lin, J. H., Lee, T. L., Luo, C. H., Hsieh, W. Y., Liang, J. M. and Wang, M. H., Micros. Res. and Tech. 40, 136 (1998).10.1002/(SICI)1097-0029(19980115)40:2<136::AID-JEMT5>3.0.CO;2-T3.0.CO;2-T>Google Scholar
32. Cheng, S.L., Huang, H Y., Peng, Y.C., Chen, L.J.. Tsui, B Y., Tsai, C.J., and Guo, S.S., Appl. Phy. Lett. 74, 1406 (1999).Google Scholar
33. Tung, R. T., Fujii, K., Kikuta, K., Chikaki, S., and Kikkawa, T., Appl. Phys. Lett. 70, 2386 (1997).10.1063/1.118880Google Scholar
34. Cheng, S.L., Chang, S.M., Huang, H.Y., Peng, Y.C., Chen, L.J.. Tsui, B Y., Tsai, C.J., and Guo, S.S., this proceedings.Google Scholar
35. Chang, S. M., Huang, H. Y., Yang, H. Y. and Chen, L. J., Appl. Phy. Lett. 74, 1406 (1999).Google Scholar
36. Chang, S. M., Huang, H. Y., Yang, H. Y. and Chen, L. J., this proceedings.Google Scholar
37. Y. C. Peng Chen, L. J., Hsieh, W. Y., Yang, Y. R., and Hsieh, Y. F., Appl. Surf Sci. 142, 336 (1999).Google Scholar
38. Cheng, S.L., Chen, L.J., and Tsui, B.Y., J. Mater. Research 14, 213 (1999).Google Scholar
39. Cheng, S.L., Jou, J.J., Chen, L.J., and Tsui, B Y., J. Mater. Research 14, 2016 (1999).Google Scholar
40. Yew, J.Y., Tseng, H.C., Chen, L.J., Nakamura, Y., and Chang, C.Y., Appl. Phys. Lett. 69, 3692 (1996).Google Scholar
41. Yew, J.Y., Chen, L.J., and Wu, W.F., J. Vac. Sci. Technol. B (in press, 1999).Google Scholar
42. Chang, S.M., H Huang, Y., Chen, L.J., and Luo, C.H., unpublished work.Google Scholar
43. Nolan, T. P., Sinclair, R. and Beyers, R., J. Appl. Phys. 71, 720 (1992).10.1063/1.351333Google Scholar
44. Byun, Jeong Soo, J. Electrochem. Soc. 143, 1984 (1996).10.1149/1.1836936Google Scholar
45. Huang, H.Y., Chen, L.J., Wu, W.F., and Yang, R.P., unpublished work.Google Scholar
46. Chen, K.M., Cheng, S.L., Chen, L.J., and B Tsui, Y., Mater. Chem. Phys. 54, 71 (1998).10.1016/S0254-0584(98)00093-5Google Scholar
47. Cheng, L. W., Cheng, S. L., Chen, J. Y., Chen, L. J., and Tsui, B. Y., Thin Solid Film (in press, 1999).Google Scholar
48. Cheng, L. W., Luo, H.M., and Chen, L. J., unpublished work.Google Scholar