Hostname: page-component-cc8bf7c57-llmch Total loading time: 0 Render date: 2024-12-11T22:59:13.024Z Has data issue: false hasContentIssue false

Siliceous Mesostructured Cellular Foams with Uniformly Sized and Shaped Pores

Published online by Cambridge University Press:  10 February 2011

P. Schmidt-Winkel
Affiliation:
Department of Chemistry Materials Research Laboratory, University of California, Santa Barbara, CA 93106
W. W. Lukens Jr
Affiliation:
Department of Chemistry Materials Research Laboratory, University of California, Santa Barbara, CA 93106
D. Zhao
Affiliation:
Department of Chemistry
P. Yang
Affiliation:
Department of Chemistry
B. F. Chmelka
Affiliation:
Department of Chemical Engineering Materials Research Laboratory, University of California, Santa Barbara, CA 93106
G. D. Stucky
Affiliation:
Department of Chemistry Materials Research Laboratory, University of California, Santa Barbara, CA 93106
Get access

Abstract

Mesostructured siliceous cellular foams (mesocellular foams, MCFs) with homogeneous ultra-large mesopores are described. MCFs consist of uniform spherical cells 21–36 nm in diameter and possess surface areas up to 900 m2/g. Uniform windows, 7–18 nm in diameter, interconnect the cells to form a continuous 3-D pore system, which makes the MCFs attractive candidates for supports for catalysis and in separation and immobilization involving large molecules. They may be of interest in low-dielectric applications. The size of the cells can be controlled by the concentration of the added organic cosolvent. Adding small amounts of NH4F selectively enlarges the windows. We propose that the MCFs are templated by oil-inwater microemulsion droplets. The large-pore MCF materials resemble aerogels, with the benefit of a facilitated synthesis procedure in combination with well-defined pores and wall structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Penry, R. H. and Green, D., Perry's Chemical Engineers’ Handbook, (McGraw-Hill, New York, 1984). b) M. T. W. Hearn, HPLC of Proteins, Peptides, and Polynucleotides, (VCH, New York, 1991). c) M. E. Davis, Chem. Ind. 4, 137 (1992).Google Scholar
2. Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B. F., Stucky, G. D., Adv. Mater. 10, 1380 (1998).10.1002/(SICI)1521-4095(199811)10:16<1380::AID-ADMA1380>3.0.CO;2-83.0.CO;2-8>Google Scholar
3. For recent reviews, see: a) Ying, J. Y., Mehnert, C. P., Wong, M. S., Angew. Chem. Int. Ed. 38, 56 (1999). b) U. Ciesla and F. Schtith, Microporous Mesoporous Mater. 27, 131 (1999).10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E3.0.CO;2-E>Google Scholar
4. Imhof, A. and Pine, D. J., Nature 389, 948 (1997); Adv. Mater. 10, 697 (1998).10.1038/40105Google Scholar
5. a) Velev, O. D., Jede, T. A., Lobo, R. F., Lenhoff, A. M., Nature 389, 447 (1997); Chem. Mater. 10, 3597 (1998). b) M. Antonietti, B. Berton, C. GÖltner, H.-P. Hentze, Adv. Mater. 10, 154 (1998). c) B. T. Holland, C. F. Blanford, A. Stein, Science 281, 538 (1998). d) P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Science 282, 2244 (1998). e) B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater. 11, 795 (1999).10.1038/38921Google Scholar
6. a) Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F., Stucky, G. D., Science 279, 548 (1998). b) D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998). c) E. Kramer, S. Fdrster, C. Gbltner, M. Antonietti, Langmuir 14, 2027 (1998).10.1126/science.279.5350.548Google Scholar
7. a) Beck, J. S., Vartuli, J. C., Roth, J. W., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., Schlenker, J. L., J. Am. Chem. Soc. 114, 10834 (1992). b) Q. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Science 268, 1324 (1995).10.1021/ja00053a020Google Scholar
8. Schmidt-Winkel, P., Lukens, W. W. Jr, Zhao, D., Yang, P., Chmelka, B. F., Stucky, G. D., J. Am. Chem. Soc. 121, 254 (1999).10.1021/ja983218iGoogle Scholar
9. Singh, M. A., Ghosh, S. S., Shannon, R. F., J. Appl. Crystallogr. 26, 787 (1993).10.1107/S0021889893005527Google Scholar
10. Mateu, L., Tardieu, A., Luzzati, V., Aggerbeck, L., Scanu, A. M., J. Mol. Biol. 70, 105 (1972).10.1016/0022-2836(72)90166-0Google Scholar
11. Feigin, L. A. and Svergun, D. I., Structure Analysis by Small-Angle X-Ray and Neutron Scattering, (Plenum Press, New York, 1987), pp. 59105.10.1007/978-1-4757-6624-0_3Google Scholar
12. Nitrogen sorption measurements were performed at 77 K on a Micromeritics ASAP 2000 instrument on samples degassed at 180°C under high vacuum for several hours.Google Scholar
13. a) Broekhoff, J. C. P. and de Boer, J. H., J. Catal. 9, 8 (1967); J. Catal. 10, 153 (1968); J. Catal. 10, 368 (1968). b) W. W. Lukens Jr., P. Schmidt-Winkel, D. Zhao, G. D. Stucky, Langmuir (1999), in press.10.1016/0021-9517(67)90174-1Google Scholar
14. a) Gregg, S. J., Sing, K. S. W., Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, New York, 1982), Ch. 3. b) S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd ed. (Academic Press, New York, 1982), p. 287.Google Scholar
15. TEM was performed on a JEOL 2000 microscope at 200 kV using copper grids.Google Scholar
16. For recent reviews, see: a) Htising, H., Schubert, U., Angew. Chem. Int. Ed. 37, 22 (1998). b) M. Schneider, A. Baiker, Catal. Rev.-Sci. Eng. 37, 515 (1995).Google Scholar
17. Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S. Q., Marti, J., Ralchenko, V. G., Science 282, 897(1998).10.1126/science.282.5390.897Google Scholar
18. For recent reviews, see: a) Langevin, D., Acc. Chem. Res. 21, 255 (1988). b) A. Kabalnov, B. Lindman, U. Olsson, L. Piculell, K. Thuresson, H. Wennerstrdm, Colloid Polym. Sci. 274, 297 (1996).10.1021/ar00151a001Google Scholar
19. Imhof, A. and Pine, D. J., J. Colloid Interface Sci. 192, 368 (1997).10.1006/jcis.1997.5020Google Scholar