Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-08T07:47:51.086Z Has data issue: false hasContentIssue false

Si/Ge Strained-Layer Epitaxy: Sil−xGex Alloy Buffer Layers and Ultra-Short Period SimGen Superlattices.

Published online by Cambridge University Press:  28 February 2011

M. Ospelt
Affiliation:
Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
J. Henz
Affiliation:
Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
E. MÜller
Affiliation:
Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
H. Von KÄnel
Affiliation:
Laboratorium für Festkörperphysik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
Get access

Abstract

Sil−xGex alloy layers and ultra-short period SimGen superlattices on alloy buffer layers of the same concentration have been grown by MBE. The superlattices as a whole have been shown to have the lattice constant of the underlying alloy buffer layer, the individual Si and Ge layers being fully strained. Samples with a graded Ge content have been used to study the relaxation as a function of Ge content by means of X-ray diffraction and RBS and channeling.

Transmission electron spectroscopy reveals that interface roughness is not simply statistical in these superlattices. Rather, electron diffraction shows additional features from a period doubling in the (111) directions, indicating that a corresponding interfacial ordering occurs. These features show 2- or 3-dimensional behavior depending on the thickness of the Si and Ge layers in the superlattices. Annealing studies show these features to persist even for annealing temperatures where the superlattices disintegrate into alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Abstreiter, G., Thin Solid Films 183, 1 (1989) and references therein.Google Scholar
[2] Kasper, E., Herzog, H.-J., Jorke, H., Abstreiter, G., Superlattices and Microstructures 3, 141 (1987).Google Scholar
[3] Froyen, S. Wood, D. M., Zunger, A., Phys. Rev. B 32, 6893 (1988).Google Scholar
[4] Satpathy, S., Martin, R. M., Walle, C. G. van de, Phys. Rev. B 38, 13237 (1988).Google Scholar
[5] Herzog, H.-J., Jorke, H., Kasper, E., Mantl, S., Proc. 2nd Int. Symp. Si-MBE, Vol. 88–8, ed. Bean, J. C., Schowalter, L. J., The Eloctrochem. Soc., Pennington, N.J., 1988, p. 58.Google Scholar
[6] Ishizaka, A., Nakagawa, K., Shiraki, Y., Collected papers of 2nd Int. Symp. on MBE and related clean surface techniques, Tokyo, 1982, p. 183.Google Scholar
[7] Ospelt, M., Bacsa, W., Henz, J., Mader, K. A., Kalnel, H. von, Superlattices and Microstructures 5, 71 (1989).Google Scholar
[8] Ospelt, M., Ph. D. thesis Nr. 9039, Swiss Federal Institute of Technology.Google Scholar
[9] Holländer, B., Mantl, S., Jäger, W., Schdffler, F., Kasper, E., Thin Solid Films 183, 157 (1989).Google Scholar
[10] Müller, E., Nissen, H.-U., Ospelt, M., Känel, H. von, Phys. Rev. Lett. 6, 1819 (1989).Google Scholar
[11] Müller, E., Nissen, H.-U., Ospelt, M., Kälnel, H. von, Stadelmann, P., Thin Solid Films 1, 165 (1989).Google Scholar
[12] Tapfer, L., Ospelt, M., Känel, H. von, J. Appl. Phys. 67, 1298 (1990).10.1063/1.345680Google Scholar
[13] Ourmazd, A., Bean, J. C., Phys. Rev. Lett 5, 765 (1985).Google Scholar
[14] Lockwood, D. J., Rajan, K., Fenton, E. W., Baribeau, J.-M., Denhoff, M. W., Solid State Com. 61, 465 (1987).Google Scholar