Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:13:23.180Z Has data issue: false hasContentIssue false

Shallow Junction Formation in As-Implanted Si by Low-Temperature Rapid Thermal Annealing

Published online by Cambridge University Press:  21 February 2011

M. K. El-Ghor
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6057
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6057
R. A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6057
Get access

Abstract

Shallow junctions were formed in single-crystal Si(100) by implantation of As at energies between 2 and 17.5 keV followed by conventional furnace annealing or by rapid thermal annealing (RTA). Cross-sectional transmission electron microscopy (XTEM) showed that defect-free shallow junctions could be formed at temperatures as low as 700 °C by RTA, with about 60% dopant activation. From a comparison of short-time and long-time annealing, it is proposed that surface image forces are responsible for the efficient removal of end-of-range (EOR) dislocation loops

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shannon, J. M., Nucl. Instrum. and Methods 182, 545 (1981).Google Scholar
2. Pennycook, S. J., Culbertson, R. J., and Narayan, J., J. Mater. Res. 1, 476 (1986).Google Scholar
3. Pennycook, S. J. and Culbertson, R. J., Mat. Res. Soc. Symp. Proc. 52, 37 (1986).Google Scholar
4. Sedgwick, T. O., J. Electrochem. Soc. 130, 484 (1983).Google Scholar
5. Seidel, T. E., Lischner, D. J., Pai, C. S., Knowell, R. V., Maher, D. M., and Jacobson, D. C., Nucl. Instrum. and Methods Phys. Res. Sect. B 7/8, 251 (1985).Google Scholar
6. Delfino, M., Sadana, D. K., Morgan, A. E., and Chu, P. K., J. Electrochem. Soc. 133, 1900 (1986).Google Scholar
7. Hodgson, R. T., Baglin, J. E. E., Michel, A. E., Mader, S., and Gelpey, J. C., Laser- Solid Interactions and Transient Thermal Processing of Materials, ed. by Narayan, J., Brown, W. L., and Lemons, R. A. (North-Holland, New York, (1983), p. 355.Google Scholar
8. Narayan, J., Holland, O. W., Eby, R. E., Wortman, J. J., Ozguz, V., and Rozgonyi, G. A., Appl. Phys. Lett. 43, 957 (1983).Google Scholar
9. Kamgar, A., Fichtner, W., Sheng, T. T., and Jacobson, D. C., Appl. Phys. Lett. 45, 754 (1984).Google Scholar
10. Wu, N. R., Sadana, D. K., and Washburn, J., Appl. Phys. Lett. 44, 782 (1984).Google Scholar
11. Kumar, S. N., Chaussemy, G., Canut, B., and Laugier, A., Appl. Phys. Lett. 53, 2167 (1988).Google Scholar
12. Tamura, M., Horiuchi, M., Ito, I., and Abe, T., Appl. Phys. Lett. 52, 1210 (1988).Google Scholar
13. Rozgonyi, G. A., these proceedings.Google Scholar
14. Ganin, E., Davari, B., Harame, D., Scilla, G., and Sai-Halasz, G. A., Appl. Phys. Lett. 54, 2127 (1989).Google Scholar
15. Ajmera, A. C. and Rozgonyi, G. A., Appl. Phys. Lett. 49, 1269 (1986).Google Scholar
16. Ozturk, M. C. and Wortman, J. J., Appl. Phys. Lett. 52, 281 (1988).Google Scholar
17. Myers, E., Ozturk, M. C., Wortman, J. J., and Hren, J. J., Appl. Phys. Lett. 53, 228 (1988).Google Scholar
18. Myers, E., Hong, S. N., Ruggles, G. A., Wortman, J. J., and Hren, J. J. (unpublished).Google Scholar
19. Zuhr, R. A., Pennycook, S. J., Noggle, T. S., Herbots, N., Haynes, T. E., and Appleton, B. R., Nucl. Instrum. and Methods Phys. Res. Sect. B 37/38, 16 (1989).Google Scholar
20. Biersack, J. P., Nucl. Instrum. and Methods 174, 257 (1980).Google Scholar
21. Lietoila, A., Gibbons, J. F., and Sigmon, T. W., Appl. Phys. Lett. 36, 765 (1980).Google Scholar
22. Groves, P. P. and Bacon, D. J., Philos. Mag. 22, 83 (1970).Google Scholar
23. Narayan, J. and Washburn, J., J. Appl. Phys. 43, 4862 (1972).Google Scholar
24. Mader, S. and Michel, A. E., Phys. Status Solidi a 33, 793 (1976).Google Scholar
25. Schwenker, R. O., Pam, E. S., and Lever, R. F., J. Appl. Phys. 42, 3195 (1971).Google Scholar