Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T15:57:41.677Z Has data issue: false hasContentIssue false

The Shallow Implantation of Bismuth During the Growth of Bismuth Nanocrystals in Al2O3 by Pulsed Laser Deposition

Published online by Cambridge University Press:  15 February 2011

A. Suárez-García
Affiliation:
Instituto de Optica, C.S.I.C., Serrano 121, 28006, Madrid, Spain
J-P. Barnes
Affiliation:
Department of Materials, Oxford University, Parks Road, Oxford, OX1 3PH, UK
R. Serna
Affiliation:
Department of Materials, Oxford University, Parks Road, Oxford, OX1 3PH, UK
A. K. Petford-Long
Affiliation:
Department of Materials, Oxford University, Parks Road, Oxford, OX1 3PH, UK
C. N. Afonso
Affiliation:
Instituto de Optica, C.S.I.C., Serrano 121, 28006, Madrid, Spain
D. Hole
Affiliation:
University of Sussex, Pevensey Building, Brighton, BN1 9QH, UK
Get access

Abstract

The effect of the laser energy density used to deposit Bi onto amorphous aluminum oxide (a-Al2O3) on the growth of Bi nanocrystals has been investigated using transmission electron microscopy of cross section samples. The laser energy density on the Bi target was varied by one order of magnitude (0.4 to 5 J cm-2). Across the range of energy densities, in addition to the Bi nanocrystals nucleated on the a-Al2O3 surface, a dark and apparently continuous layer appears below the nanocrystals. Energy dispersive X-ray analysis on the layer have shown it is Bi rich. The separation from the Bi layer to the bottom of the nanocrystals on top is consistent with the implantation range of Bi species in a-Al2O3. As the laser energy density increases, the implantation range has been measured to increase. The early stages of the Bi growth have been analyzed in order to determine how the Bi implanted layer develops.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (John Wiley & Sons, New York, 1994)Google Scholar
2 Afonso, C. N., in Insulating Materials for Optoelectronics (World Scientific, Singapore, 1995), Chap. 1Google Scholar
3 Serna, R., Gonzalo, J., Suárez-García, A., Afonso, C. N., Barnes, J. P., Petford-Long, A. K., Doole, R. C., and Hole, D., J. of Microscopy 201, 250255 (2001).Google Scholar
4 Serna, R., Sande, J. C. G. de, Ballesteros, J. M., and Afonso, C. N., J. Appl. Phys 84, 45094516 (1998).Google Scholar
5 Barnes, J. P., Petford-Long, A. K., Doole, R. C., Serna, R., Gonzalo, J., Suárez-García, A, Afonso, C. N., and Hole, D., Nanotechnology 13, 465 (2002)Google Scholar
6 Barnes, J-P., Petford-Long, A.K., Suarez-Garcia, A. and Serna, R., J. Appl. Phys. 93, vol 10, (2003) (to be published)Google Scholar
7 Krebs, H. U., Stormer, M., Fahler, S., Bremert, O., Hamp, H., Pundt, A., Teichler, H., Blum, W., and Metzger, T. H., Appl. Surf. Sci. 109, 563 (1997)Google Scholar
8 Sturm, K. and Krebs, H. U., J. Appl. Phys. 90, 1061 (2001)Google Scholar
9 Gurtfeld, R. J. von and Dreyfus, R. W., Appl. Phys. Lett. 54, 1212 (1989)Google Scholar