Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T10:28:42.288Z Has data issue: false hasContentIssue false

Self-polarization Mechanism in Textured Pyroelectric Pb(Ti1-xZrx)O3 films

Published online by Cambridge University Press:  21 March 2011

G. Suchaneck
Affiliation:
Dresden University of Technology, Institute for Solid State Electronics, Mommsenstr. 13, 01062 Dresden, Germany
G. Gerlach
Affiliation:
Dresden University of Technology, Institute for Solid State Electronics, Mommsenstr. 13, 01062 Dresden, Germany
Yu. Poplavko
Affiliation:
National Technical University of Ukraine, Peremogi Av. 37, 252056 Kyiv, Ukraine
A. I. Kosarev
Affiliation:
A. F. Joffe Physico-Technical Institute, ul. Polytekhnicheskaya 26, 194021 St. Petersburg, Russia
A. N. Andronov
Affiliation:
St. Petersburg State Technical University, ul. Polytechnicheskaya 29, 194251 St. Petersburg, Russia
Get access

Abstract

Self-polarization of Pb(Ti1−xZrx)O3 (PZT) thin films is explained on the basis of the formation of a TiO2−x-enriched interlayer close to the bottom electrode. Electrons provided by oxygen vacancies generate a n-type interface layer in the PZT at the electrode. A graded ferroelectric layer is then formed by electron injection from the bottom electrode and electron trapping on Ti4+ ions. A “built-in” difference in free energy forms which acts to pole the ferroelectric. Band bending was observed by contact potential difference measurements at a distance of 70 to 90 nm from the bottom electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Suchaneck, G., Koehler, R., Padmini, P., Sandner, T., Frey, J. and Gerlach, G., Surface Coatings and Technol., 116–119, 12381243 (1999).10.1016/S0257-8972(99)00107-3Google Scholar
2. Schreiter, M., Bruchhaus, R., Pitzer, D. and Wersing, W., Proc. 11th IEEE Int. Symp. on Application of Ferroelectrics, (Montreux, 1998) pp.181185.Google Scholar
3. Köhler, R., Suchaneck, G., Padmini, P., Sandner, T., Gerlach, G. and Hoffmann, G., Ferroelectrics, 225, 5766 (1999).10.1080/00150199908009111Google Scholar
4. Tasson, M., Legal, H., Peuzin, J.C. and Lissalde, F.C., phys.stat.sol.(a), 31, 729737 (1975).10.1002/pssa.2210310246Google Scholar
5. Gurevich, V.L., Fizika Tverdogo Tela, 23, 23572363 (1981).Google Scholar
6. Sajosch, H.J. and Narz, T., Phys.Rev., B41, 38293831 (1990).10.1103/PhysRevB.41.3829Google Scholar
7. Lines, M.E. and Glass, A.M., Principles and applications of ferroelectrics and related materials, (Clarendon Press, 1977).Google Scholar
8. Arlt, G. and Neumann, H., Ferroelectrics, 87, 109120 (1988).10.1080/00150198808201374Google Scholar
9. Pike, G. E., Warren, W. L., Dimos, D., Tuttle, B. A., Ramesh, R., Lee, J., Keramidas, V. G., and Evans, J. T., Appl. Phys. Lett., 66, 484486 (1995).10.1063/1.114064Google Scholar
10. Warren, W. L., Pike, G. E., Vanheusden, K., Dimos, D., Tuttle, B. A. and Robertson, J., J. Appl. Phys., 79, 92509257 (1996).10.1063/1.362600Google Scholar
11. Maeder, T., Sagalowicz, L. and Muralt, P., Jpn. J. Appl. Phys., 37, 20072012 (1998).10.1143/JJAP.37.2007Google Scholar
12. Hiboux, S. and Muralt, P., Ferroelectrics,224, 315322 (1999).10.1080/00150199908210582Google Scholar
13. Anderson, P., Phys. Rev., 47, 958964 (1935).10.1103/PhysRev.47.958Google Scholar
14. Holm, R. and Holm, E., Electric Contact Handbook, (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958).Google Scholar
15. Brooks, K.G., Reaney, I.M., Klissurska, R.D., Huang, Y., Bursil, L. and Setter, N., J. Mat. Res. 9, 25402553 (1994).10.1557/JMR.1994.2540Google Scholar
16. Tani, T., Xu, Z. and Payne, D.A., Mat. Res. Symp. Proc. 310, 269274 (1993).10.1557/PROC-310-269Google Scholar
17. Muralt, P., Maeder, T., Sagalowicz, L., Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L. and Bullock, E.L., J. Appl. Phys. 83, 38353841 (1998).10.1063/1.366614Google Scholar
18. Kwok, C.K. and Desu, S.B., J. Mater. Res. 8, 339344 (1993).10.1557/JMR.1993.0339Google Scholar
19. Aoki, K., Fukuda, Y., Numata, K. and Nishimura, A., Jpn. J. Appl. Phys. 24, 192195 (1995).10.1143/JJAP.34.192Google Scholar
20. Scott, J.F., Watanabe, K., Hartmann, A.J. and Lamb, R.C., Ferroelectrics, 225, 83 (1999).10.1080/00150199908009114Google Scholar
21. CRC Handbook of Chemistry and Physics, ed. Weast, R.C. (CRC Press, Boca Raton, 1984), Vol. 65.Google Scholar
22. Suchaneck, G., Koehler, R., Sandner, T., Gerlach, G., Deineka, A., Jastrabik, L., Kosarev, A. I. and Andronov, A.N., Intergrated Ferroelectrics, 32, 169177 (2001).10.1080/10584580108215688Google Scholar
23. Miura, K. and Tanaka, M., Jpn. J. Appl. Phys., 35, 27192725 (1996).10.1143/JJAP.35.2719Google Scholar
24. Bell, J.M. and Knight, P.C., Integrated Ferroelectrics, 4, 325332 (1994).10.1080/10584589408223877Google Scholar
25. Lee, J.J., Thio, C.L. and Desu, S.B., J. Appl. Phys., 78, 50735078 (1995).10.1063/1.359737Google Scholar
26. Yoo, I.K., Desu, S.B. and Xing, J., Mat. Res. Symp. Proc. 310, 165177 (1993).10.1557/PROC-310-165Google Scholar
27. Law, C.W., Tong, K.Y., Li, J.H. and Li, K., Solid-State Electronics, 44, 15691571 (2000).10.1016/S0038-1101(00)00102-7Google Scholar
28. Jida, S. and Miki, T., J. Appl. Phys., 80, 52345239 (1996).10.1063/1.363509Google Scholar
29. Müller, K.A., Berlinger, W. and Rubins, R.S., Phys. Rev. 186, 361371 (1969).10.1103/PhysRev.186.361Google Scholar
30. Klissurska, R.D., Brooks, K.G. and Setter, N., Ferroelectrics, 225, 171178 (1999).10.1080/00150199908009125Google Scholar
31. Mantese, J.V., Schubring, N.W., Michell, A.L. and Catalan, A.B., Appl. Phys. Lett. 67, 721723 (1995).10.1063/1.115286Google Scholar