Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:03:27.416Z Has data issue: false hasContentIssue false

Selectively Nucleated Lateral Crystallization for a Large Single-Grained Pb(Zr,Ti)O3 on Polycrystalline-Silicon Thin-Film Transistors for System-On-Glass Applications

Published online by Cambridge University Press:  16 June 2015

Jae Hyo Park
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Seung Ki Joo
Affiliation:
Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea
Get access

Abstract

A single-grained Pb(Zr,Ti)O3 (PZT) was successfully grown for the gate dielectric of polycrystalline-silicon (poly-Si) thin-film transistor (TFT). The total structure was MoW/PZT/HfO2/poly-Si/glass. The giant single-grained PZT was obtained by controlling the artificial nucleation formed by Pt dots in a desirable location and enlarging the nucleated seed until it covers the poly-Si channel. The single-grained diameter size was 40 μm with a (100) dominated texture. The poly-Si memory device with single-grained PZT showed an excellent ferroelectric, electrical and reliability properties comparing with poly-Si memory device with poly-grained PZT. Moreover, eliminating the grain boundary in PZT film showed the fatigue and retention characteristics with only 1.1 % after 1013 cycles and 22 % after 1 month, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, C.-W. et al. , SID Symposium Digest of Technical Papers, 35, 868, May 2004 CrossRefGoogle Scholar
Nakajima, Y. et al. , SID Symposium Digest of Technical Papers, 35, 864, May 2004 CrossRefGoogle Scholar
Nishibe, T. and Nakamura, H., SID Symposium Digest of Technical Papers, 37, 1091, Jun. 2006 CrossRefGoogle Scholar
Park, J.H. et al. , J. Nanosci. Nanotech., 13, 7073, Oct. 2013 CrossRefGoogle Scholar
Kim, B. H. et al. ., IEEE Electron Device Lett., 32, 324, Jan. 2011 CrossRefGoogle Scholar
Chu, L.-W., Liu, P.-T., and Ker, M.-D., J. Display Tech., 7, 657, Dec. 2011 CrossRefGoogle Scholar
Nguyen, N. et al. . D: Appl. Phys., 43, 105406, Feb. 2010 Google Scholar
Pan, M., Yen, L.-C., Huang, S.-H., Lo, C.-T., and Chao, T.-S., IEEE Tran. Electron Devices, 60, 2251, Jun. 2013 CrossRefGoogle Scholar
Ma, T. P. and Han, J.-P., IEEE Electron Device Lett., 23, 386, Jul. 2002 CrossRefGoogle Scholar
Sinharoy, S. et al. ., J. Vac. Sci. Technol. A., 10, 1554, Feb. 1992 CrossRefGoogle Scholar
Hoffman, J. et al. , Adv. Mater., 22, 2957, Jul. 2010 CrossRefGoogle Scholar
Scott, J. F. and Dawber, M., Appl. Phys. Lett., 76, 3801, Jun. 2000 CrossRefGoogle Scholar
Pintilie, L. and Alexe, M., J. Appl. Phys., 98, 124103, Dec. 2005 CrossRefGoogle Scholar
Lee, J.-S., and Joo, S.-K., Appl. Phys. Lett., 81, 2602, Sep. 2002 CrossRefGoogle Scholar
Lee, J.-S., and Joo, S.-K., Jpn, J. Appl. Phys., 39, 6343, Jul. 2000 CrossRefGoogle Scholar
Lee, J.-S., and Joo, S.-K., J. Appl. Phys., 92, 2658, Sep. 2002 CrossRefGoogle Scholar
Byun, C. W. et al. ., Electron. Mater. Lett., 8, 251, Jun. 2012 CrossRefGoogle Scholar
Yoo, I. K. and Desu, S. B., Phys.. stat. sol. (a), 133, 565, Oct. 1992 CrossRefGoogle Scholar
Lee, J.-S. and Joo, S.-K., Solid-State Electron., 10, 1651, Oct. 2002 CrossRefGoogle Scholar