Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:22:43.940Z Has data issue: false hasContentIssue false

Segregation at a Single Trap in the Presence of Fields

Published online by Cambridge University Press:  15 February 2011

Haim Taitelbaum
Affiliation:
Physical Sciences Laboratory, Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD 20892
George H. Weiss
Affiliation:
Physical Sciences Laboratory, Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD 20892
Get access

Abstract

There have been a number of recent investigations of segregation properties of diffusing particles in the presence of a single static trap in low dimensions. We study these properties when the diffusing particles are subject to different forms of external fields: global constant bias, random bias fields (Sinai model) and random transition rates. We discuss two measures of segregation, the distances from the trap either to the point at which the concentration profile reaches a specified fraction of its bulk value, or to the nearest unreacted particle. For the cases of global bias (both away from, and towards the trap) and random fields, we found that both measures of segregation have the same asymptotic temporal behavior, while for random transition rates they differ. We explain this difference by relating the nearest-neighbor distance measure to properties of hard-core diffusion in these systems. We also found anomalous spatial shapes for the profile in the vicinity of the trap in the random systems, as well as anomalous reaction rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ovchinnikov, A. A. and Zeldovich, Ya B., Chem. Phys., 28, 215 (1978).Google Scholar
2. Toussaint, D. and Wilczek, F., J. Chem. Phys., 78, 2642 (1983).Google Scholar
3. Blumen, A., Klafter, J. and Zumofen, G., in Optical Spectroscopy of Glasses, edited by Zschokke, I. (Reidel, Dordrecht, 1986), p. 199.Google Scholar
4. Anacker, L.W. and Kopelman, R., Phys. Rev. Lett., 58, 289 (1987); J. Phys. Chem., 91, 5555 (1987).Google Scholar
5. Kopelman, R., Science, 241, 1620 (1988).Google Scholar
6. Kuzovkov, V. and Kotomin, E., Rep. Prog. Phys., 51, 1479 (1988).Google Scholar
7. Lindenberg, K., West, B.J. and Kopelman, R., Phys. Rev. Lett., 60, 1777 (1988).Google Scholar
8. Clement, E., Sander, L.M. and Kopelman, R., Phys. Rev. A, 39, 6455 (1989); 39, 6466 (1989); 39, 6472 (1989).Google Scholar
9. Ben-Avraham, D., Burschka, M.A. and Doering, C.R., J. Stat. Phys., 60, 695 (1990).Google Scholar
10. Proceedings of NIH Meeting on Models of Non-Classical Reaction Rates, J. Stat. Phys., 65, No. 5/6, Dec. 1991.Google Scholar
11. Leyvraz, F. and Redner, S., Phys. Rev. A, 46, 3132 (1992).Google Scholar
12. Smoluchowski, M.V., Z. Phys. Chem., 92, 129 (1917).Google Scholar
13. Prasad, J. and Kopelman, R., Phys. Rev. Lett., 59, 2103 (1987).Google Scholar
14. Kopelman, R., Parus, S.J. and Prasad, J., Chem. Phys., 128, 209 (1988).Google Scholar
15. Parus, S.J. and Kopelman, R., Phys. Rev. B, 39, 889 (1989).Google Scholar
16. Weiss, G.H., Kopelman, R. and Havlin, S., Phys. Rev. A, 39, 466 (1989).Google Scholar
17. Ben-Avraham, D. and Weiss, G.H., Phys. Rev. A, 39, 6436 (1989).Google Scholar
18. Taitelbaum, H., Kopelman, R., Weiss, G.H. and Havlin, S., Phys. Rev. A, 41, 3116 (1990).Google Scholar
19. Taitelbaum, H., Havlin, S. and Weiss, G.H., Chem. Phys., 146, 351 (1990).Google Scholar
20. Schoonover, R., Ben-Avraham, D., Havlin, S., Kopelman, R. and Weiss, G.H., Physica A, 171, 232 (1991).Google Scholar
21. Havlin, S., Larralde, H., Kopelman, R. and Weiss, G.H., Physica A, 169, 337 (1990).Google Scholar
22. Redner, S. and Ben-Avraham, D., J. Phys. A, 23, L1169 (1990).Google Scholar
23. Taitelbaum, H., Phys. Rev. A, 43, 6592 (1991).Google Scholar
24. Dayan, I. and Weiss, G.H., J. Chem. Phys., 92, 7374 (1990).Google Scholar
25. Datta, P.K. and Jayannavar, A.M., Physica A, 184, 135 (1992); Pramana - J. Phys., 38, 257 (1992).Google Scholar
26. Taitelbaum, H., Physica A, 190, 295 (1992).Google Scholar
27. Weiss, G.H., Physica A, (in press).Google Scholar
28. Havlin, S., Kopelman, R., Schoonover, R. and Weiss, G.H., Phys. Rev. A, 43, 5228 (1991).Google Scholar
29. Weiss, G.H. and Masoliver, J., Physica A, 174, 209 (1991).Google Scholar
30. Weiss, G.H. and Havlin, S., J. Stat. Phys., 63, 1005 (1991).Google Scholar
31. Haus, J.W. and Kehr, K.W., Phys. Rep., 150, 263 (1987).Google Scholar
32. Havlin, S. and Ben-Avraham, D., Adv. Phys., 36, 695 (1987).Google Scholar
33. Bouchaud, J-P. and Georges, A., Phys. Rep., 195, 127 (1990).Google Scholar
34. Bunde, A. and Havlin, S., Fractals and Disordered Systems, (Springer, Berlin, 1991).Google Scholar
35. Taitelbaum, H. and Weiss, G.H. (preprint).Google Scholar
36. Havlin, S., J. Stat. Phys., 58, 653 (1990), and references cited therein.Google Scholar
37. Ya. Sinai, G., Theory Prob. Appl., 27, 256 (1982).Google Scholar
38. Kesten, H., Physica A, 138, 299 (1986).Google Scholar
39. Koscielny-Bunde, E., Bunde, A., Havlin, S. and Stanley, H.E., Phys. Rev. A, 37, 1821 (1988).Google Scholar
40. Havlin, S., Kiefer, J.E. and Weiss, G.H., Phys. Rev. A, 38, 4761 (1988).Google Scholar
41. Harris, T.E., J. Appl. Prob., 2, 323 (1965).Google Scholar
42. Alexander, S. and Pincus, P., Phys. Rev. B, 18, 2011 (1978).Google Scholar