Published online by Cambridge University Press: 26 February 2011
Electrical behavior at single crystal silicide-silicon interfaces was studied. Schottky barrier heights were determined for epitaxial NiSi2 and CoSi2 layers grown under ultrahigh vacuum conditions on (111), (100) and (110) surfaces of Si. A dependence of Schottky barrier heights on interface structure was observed. These results favor intrinsic mechanisms for Schottky barrier formation. The advantages of having homogeneous metal-semiconductor interfaces for the study of Schottky barrier mechanisms are pointed out. In particular, the present epitaxial silicide-silicon interfaces represent ideal candidates for detailed theoretical investigations based on experimentally obtained atomic structures.