Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T04:52:31.316Z Has data issue: false hasContentIssue false

Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 February 2011

Muhammad B. Haider
Affiliation:
[email protected], Ohio University, Physics and Astronomy, 251B Clippinger labs, Athens, OH, 45701, United States, 740-597-2964, 740-593-0433
Rong Yang
Affiliation:
Hamad Al-Brithen
Affiliation:
Costel Constantin
Affiliation:
Arthur R. Smith
Affiliation:
[email protected], Ohio University, Physics and Astronomy, United States
Gabriel Caruntu
Affiliation:
Charles J O'Connor
Affiliation:
Get access

Abstract

Cr doped GaN was grown by rf N-plasma molecular beam epitaxy on sapphire(0001) at a sample temperature of 700 °C. Cr/Ga flux ratio was set to a value from 5% to 20%. Subsequently, scanning tunneling microscopy was performed on these surfaces. Cr incorporates on the GaN surface at 700 °C at a Cr concentration of 5% and less. By increasing the Cr/Ga flux ratio to 20% in CrGaN, linear nano structures were formed on the surface, which were not observed on the bare GaN surface. The RHEED and STM studies reveal that Cr atoms form 3×3 reconstruction when 0.1 ML of Cr was deposited at room temperature on 1×1 adlayer of Ga on GaN(000-1). Cr substitutes Ga on the surface when deposited at 700 °C on the MBE grown GaN(000-1) surface for all the experiments which we have performed provided the Cr concentration is low (∼5%).

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Katayama-Yoshida, H., Semicond. Sci. Technol. 17, 367 (2002).CrossRefGoogle Scholar
2. Lee, J. S., Lim, J. D., Khim, Z. G., and Park, Y. D., J. Appl. Phys. 93, 4512 (2003).CrossRefGoogle Scholar
3. Park, S. E., Lee, H. J., Cho, Y. C., and Jeong, S. Y., Appl. Phys. Lett. 80, 4187 (2002).CrossRefGoogle Scholar
4. Hashimoto, M., Zhou, Y. K., Kanamura, M., Katayama-Yoshida, H., and Asahi, H., J. Crystal Growth 251, 327 (2003).CrossRefGoogle Scholar
5. Asahi, H., Zhou, Y. K., Hashimoto, M., Kim, M. S., Li, X. J., Emura, S., and Hasegawa, S., and Phys, J.: Condens. Matter 16, S5555 (2004).CrossRefGoogle Scholar
6. Zhou, Y. K., Hashimoto, M., Kanamura, M., and Asahi, H., Supercond, J.. Incorporating Novel Magnetism 16, 37 (2003).Google Scholar
7. Haider, M. B., Al-Brithen, H., Yang, R., Constantin, C., Ingram, D., and Smith, A. R., Caruntu, G., and O'Connor, C. J., J. Crystal Growth 285, 300 (2005).CrossRefGoogle Scholar
8. Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J., and Northrup, J. E., Phys. Rev. Lett. 79, 3934 (1997).CrossRefGoogle Scholar
9. Smith, A. R., Feenstra, R. M., Greve, D. W., Shin, M. S., Skowronski, M., Neugebauer, J., and Northrup, J. E., J. Vac. Sci. Technol. B 16, 2242 (1998).CrossRefGoogle Scholar
10. Smith, A. R., Feenstra, R. M., Greve, D. W., Neugebauer, J., and Northrup, J. E., Appl. Phys. A 66, S947 (1998).CrossRefGoogle Scholar
11. Liu, H. X., Wu, S. Y., Singh, R. K., Gu, L., Smith, D. J., Newman, N., Dilley, N. R., Montes, L., and Simmonds, M. B. Appl. Phys. Lett. 85, 4076 (2004).CrossRefGoogle Scholar