Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T16:34:47.706Z Has data issue: false hasContentIssue false

Routes to the Formation of Air Gap Structures Using PECVD

Published online by Cambridge University Press:  01 February 2011

Raymond N. Vrtis
Affiliation:
[email protected], Air Products and Chemicals Inc, Electronics, 7201 Hamilton Blvd, R4203, Allentown, PA, 18195, United States
Dingjun Wu
Affiliation:
[email protected], Air Products and Chemicals Inc, Electronics, 7201 Hamilton Blvd, R4203, Allentown, PA, 18195, United States
Mark L O'Neill
Affiliation:
[email protected], Air Products and Chemicals Inc, Electronics, 7201 Hamilton Blvd, R4203, Allentown, PA, 18195, United States
Mary K. Haas
Affiliation:
[email protected], Air Products and Chemicals Inc, Electronics, 7201 Hamilton Blvd, R4203, Allentown, PA, 18195, United States
Scott J. Weigel
Affiliation:
[email protected], Air Products and Chemicals Inc, Electronics, 7201 Hamilton Blvd, R4203, Allentown, PA, 18195, United States
Eugene J. Karwacki
Affiliation:
[email protected], Air Products and Chemicals Inc, Electronics, 7201 Hamilton Blvd, R4203, Allentown, PA, 18195, United States
Get access

Abstract

Fabrication of air gap features have been achieved by three processes utilizing the diffusion of materials through a porous OSG layer. The first process involves the decomposition of a PECVD deposited organic material, either thermally or via UV anneal, to create a void with the decomposition by-products diffusing through the porous OSG layer. The second process uses the etch selectivity of XeF2 or BrF3 towards silicon versus OSG to diffuse through the porous OSG layer to etch the underlying silicon. Finally the water solubility of films such as GeO2 or B2O3, which can be easily deposited by PECVD, can be utilized for void formation via dissolution of the sacrificial inorganic layer through the porous OSG.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

(1) (a) O'Neill, M.L.; Vrtis, R.N.; Vincent, J.L.; Lukas, A.S.; Karwacki, E.J.; Peterson, B.K; Bitner, M.D. MRS Symposium Proceedings 766, 321 (2003) (b) Vrtis, R.N.; O'Neill, M.L.; Vincent, J.L.; Lukas, A.S.; Peterson, B.K; Bitner, M.D.; Karwacki, E.J. MRS Symposium Proceedings 766, 259 (2003) (c) Vrtis, R.N.; O'Neill, M.L.; Vincent, J.L.; Lukas, A.S.; Xiao, M.; Norman, J.A.T. U.S. Patent # 6,846,515.Google Scholar
(2) Fulford, H.J. Jr.,; Dawson, R.; Hause, F.N.; Bandyopadhyay, B.; Michael, M.W.; Brennan, W.S. US Patent 6,376,330 B1.Google Scholar
(3) (a) Keong, S.; Lim, V.; The, Y., Ang, T.-C.; See, A.; Siew, Y.K. US Patent 6,380,106 B1. (b) Chan, K.; Gleason, K. K.. J. Electrochem. Soc. (2006), 153(4), C223-C228.Google Scholar
(4) Nag, S.S.; Chatterjee, A.; Dixit, G.A. US patent 6,297,125 B1.Google Scholar
(5) Lopez, G. C.; Rosenbloom, A. J.; Weedn, V. W.; Gabriel, K. J. Proceedings of the µTAS 2002 Symposium, 6th, Nara, Japan, Nov. 3-7, 2002 (2002), 2, 934936.Google Scholar
(6) Sangrador, J.; Olivares, J.; Iborra, E.; Vergara, L.; Clement, M.; , Sanz-Hervas, A. Proc.of the SPIE-Intl. Soc. For Opt. Eng. (2005) 5836 (smart sensors, actuators, and MEMSII), 1-15.Google Scholar
(7) MacDougall, J, E.; Heier, K. R.; Weigel, S. J. US Patent US6942918 B2Google Scholar