Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T08:49:50.326Z Has data issue: false hasContentIssue false

Room temperature recrystallization of nanocrystalline thin copper foils

Published online by Cambridge University Press:  15 February 2011

J. Dille
Affiliation:
Physical Metallurgy, CP194/03 Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
J.-L. Delplancke
Affiliation:
Metallurgy - Electrochemistry Department, CP165 Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
J. Charlier
Affiliation:
Physical Metallurgy, CP194/03 Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
R. Winand
Affiliation:
Metallurgy - Electrochemistry Department, CP165 Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles, Belgium
Get access

Abstract

Thin copper foils (100 micrometers thick) are produced by electrolysis on anodized titanium substrates. A sharp distribution of grain diameter is observed around 200 nanometers. The X-ray diffraction pattern shows a slight preferential orientation of the crystals with the (111) planes parallel to the substrate. This X-ray diffraction pattern evolves at room temperature. After 60 days, a preferential orientation of the (200) planes parallel to the substrate is observed. This effect is associated with the recrystallisation of the foil with growth of large copper grains (diameter higher than 5 micrometers) as observed by high resolution transmission electron microscopy.

The structural evolution of the copper foils is studied by electron microscopy, X-ray and electron diffractions at different temperatures.

The mechanical properties of the foils are also studied as a function of time after electrodeposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Delplancke, J. L., Sun, M. O'Keefe, T. J., Winand, R., Hydrometallurgy, 24, 179 (1990)Google Scholar
[2] Delplancke, J. L., Winand, R., Dille, J., Charlier, J., Mat. Res. Soc. Symp. Proc., 607, Vol.308, (1993)Google Scholar
[3] Degrez, M., Winand, R., ATB Metallurgie, 5, XXIX (1–2), (1989)Google Scholar
[4] Delplancke, J.L., Ongaro, M., Winand, R., Journal of Applied Electrochemistry, 22, 843 (1992)Google Scholar
[5] Delplancke, J.L., Degrez, M., Fontana, A., Winand, R., Surface Technology, 16, 153 (1982)Google Scholar
[6] Delplancke, J.L., Winand, R., Electrochimica Acta, 33, 1539 (1988)Google Scholar
[7] R., Winand, Mem. Sci. Rev. Fr. Métallurgie, LVIII, 1, 25 (1961); Trans. / Sect. C, IMM, 84, 67 (1975); Hydrometallurgy, 29, 567 (1992)Google Scholar
[8] De, Keijser, Langford, , Mitftemeijer, , Vogels, , J. Appl. Cryst., 308, 15 (1982)Google Scholar
[9] Haessner, F., ‘Recrystallization of Metallic Materials’, Dr. Riederer Verlag, Stuttgart, (1978)Google Scholar