Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T08:59:22.675Z Has data issue: false hasContentIssue false

Role of Weathering Layers on the Alteration Kinetics of Medieval Stained Glass in an Atmospheric Medium

Published online by Cambridge University Press:  22 August 2014

Aurélie Verney-Carron
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Anne Michelin
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Lucile Gentaz
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Tiziana Lombardo
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Anne Chabas
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Mandana Saheb
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Patrick Ausset
Affiliation:
LISA UMR7583 CNRS/UPEC/UPD, 61 avenue du Général de Gaulle, 94010 Créteil, France.
Claudine Loisel
Affiliation:
LRMH, USR 3224 CNRS, 29 rue de Paris, 77420 Champs-sur-Marne, France.
Get access

Abstract

In order to model and predict the alteration of medieval potash-containing stained glass, it is necessary to understand the mechanisms of alteration layer formation at the glass surface and its role on the evolution of alteration kinetics. Moreover, the alteration layers observed on stained glasses are particular, as they are often fractured and heterogeneous in terms of thickness, with the appearance of pits and the detachment of scales. Contrary to silicate glasses altered in aqueous environment where the gel layer has a protective role, cracks and scales are harmful to the durability of stained glasses altered in air. In order to address these mechanistic issues, a program of experiments in the laboratory and in the field were performed. The fracturing was shown to be caused by the growth of the alteration layers and amplified by the alternation of humid and dry periods changing the density of hydrated layers. The pitting is initiated by defects at the glass surface and increased in external atmospheric medium as these defects fix the precipitated salts. However, despite fracturing and pitting, the development of an altered layer imposes a diffusive transport of the solution between the external medium and the bulk glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Staudigel, H. and Hart, S.R., Geochim. Cosmochim. Acta 47, 337350 (1983).10.1016/0016-7037(83)90257-0CrossRefGoogle Scholar
Poinssot, C. and Gin, S., J. Nucl. Mater. 420, 182192 (2012).10.1016/j.jnucmat.2011.09.012CrossRefGoogle Scholar
Boksay, Z., Bouquet, G. and Dobos, S., Phys. Chem. Glasses 9, 6971 (1968).Google Scholar
Doremus, R.H., J. Non-Cryst. Solids 19, 137144 (1975).10.1016/0022-3093(75)90079-4CrossRefGoogle Scholar
Newton, R., “Deterioration of Glass,” Conservation of Glass, eds Newton, R., Davison, S. (Buttherworth Heinemann, 1989) pp. 135164.Google Scholar
Bunker, B.C., J. Non-Cryst. Solids 179, 300308 (1994).10.1016/0022-3093(94)90708-0CrossRefGoogle Scholar
Valle, N., Verney-Carron, A., Sterpenich, J., Libourel, G., Deloule, E. and Jollivet, P., Geochim. Cosmochim. Acta 74, 34123431 (2010).10.1016/j.gca.2010.03.028CrossRefGoogle Scholar
Crovisier, J. L., Advocat, T. and Dussossoy, J.L., J. Nucl. Mater. 321, 91109 (2003).10.1016/S0022-3115(03)00206-XCrossRefGoogle Scholar
Verney-Carron, A., Gin, S. and Libourel, G., Geochim. Cosmochim. Acta 72, 53725385 (2008).10.1016/j.gca.2008.08.018CrossRefGoogle Scholar
Sterpenich, J. J. and Libourel, G., Chem. Geol. 174, 181193 (2001).10.1016/S0009-2541(00)00315-6CrossRefGoogle Scholar
Munier, I., Lefèvre, R.A. and Losno, R., Glass Technol. 43, 114124 (2002a).Google Scholar
Gentaz, L., Lombardo, T., Loisel, C., Chabas, A. and Vallotto, M., Environ. Sci. Pollut. Res. 18, 291300 (2011).10.1007/s11356-010-0370-7CrossRefGoogle Scholar
Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P., Ayral, A., De Windt, L. and Santarini, G., J. Nucl. Mater. 380, 821(2008).10.1016/j.jnucmat.2008.06.044CrossRefGoogle Scholar
Guy, C. and Schott, J., Chem. Geol. 78, 181204 (1989).10.1016/0009-2541(89)90057-0CrossRefGoogle Scholar
Techer, I., Advocat, T., Lancelot, J. and Liotard, J.M., J. Nucl. Mat. 282, 4046 (2000).10.1016/S0022-3115(00)00399-8CrossRefGoogle Scholar
Verney-Carron, A., Gin, S., Frugier, P. and Libourel, G., Geochim. Cosmochim. Acta 74, 22912315 (2010).10.1016/j.gca.2010.01.001CrossRefGoogle Scholar
Frugier, P., Chave, T., Gin, S. and Lartigue, J.E., J. Nucl. Mater. 392, 552567 (2009).10.1016/j.jnucmat.2009.04.024CrossRefGoogle Scholar
Gentaz, L., Lombardo, T., Chabas, A., Loisel, C. and Verney-Carron, A., Atm. Env. 55, 459466 (2012).10.1016/j.atmosenv.2012.03.008CrossRefGoogle Scholar
Munier, I., Lefèvre, R.A., Geotti-Bianchini, F. and Verità, M., Glass Technol. 43, 225237 (2002b).Google Scholar
Carmona, N., Villegas, M.A. and Fernández Navarro, J.M., J. Mater. Sci. 41, 23392346 (2006a).10.1007/s10853-005-3948-6CrossRefGoogle Scholar
Carmona, N., Laiz, L., Gonzalez, J.M., Garcia-Heras, M., Villegas, M.A., Saiz-Jimenez, C.. Int. Biodeter. Biodegrad. 58, 155161 (2006b).10.1016/j.ibiod.2006.06.014CrossRefGoogle Scholar
Lombardo, T., Loisel, C., Gentaz, L., Chabas, A., Verità, M. and Pallot-Frossard, I., Corr. Engin. Sci. Technol. 45, 420424 (2010).10.1179/147842210X12710800383800CrossRefGoogle Scholar
Sterpenich, J. and Libourel, G., J. Non-Cryst. Solids 352, 54465451(2006).10.1016/j.jnoncrysol.2006.08.041CrossRefGoogle Scholar