Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:41:03.105Z Has data issue: false hasContentIssue false

The role of vacancies in the pressure amorphisation phenomenon observed in Ge-Sb-Te phase change alloys

Published online by Cambridge University Press:  01 February 2011

Milos Krbal
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Nanodevice Innovation Research Centre, Tsukuba, Japan
Alex Kolobov
Affiliation:
[email protected], United States
Paul Fons
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Nanodevice Innovation Research Centre, Tsukuba, Japan
Junji Tominaga
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology, Nanodevice Innovation Research Centre, Tsukuba, Japan
Julien Haines
Affiliation:
[email protected], Institute Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, PMDP/PMOF, Université Montpellier II, Montpellier, France
Annie Pradel
Affiliation:
[email protected], Institute Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, PMDP/PMOF, Université Montpellier II, Montpellier, France
Michel Ribes
Affiliation:
[email protected], Institute Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, PMDP/PMOF, Université Montpellier II, Montpellier, France
Claire Levelut
Affiliation:
[email protected], Université Montpellier II, Laboratoire des Colloides, Verres et Nanomatériaux, Montpellier, France
Rozenn Le Parc
Affiliation:
[email protected], Université Montpellier II, Laboratoire des Colloides, Verres et Nanomatériaux, Montpellier, France
Michael Hanfland
Affiliation:
[email protected], European Synchrotron Radiation Facility, Grenoble, France
Get access

Abstract

We demonstrate, both experimentally and by computer simulation, that while the metastable face-centered cubic (fcc) phase of Ge-Sb-Te becomes amorphous under hydrostatic compression at about 15 GPa, the stable trigonal phase remains crystalline. We present evidences that the pressure-induced amorphisation phenomenon strongly depends on the concentration of vacancies included in the Ge/Sb sublattice, but is thermally insensitive. Upon higher compression, a body-centered cubic phase is obtained in both cases at around 30 GPa. Upon decompression, the amorphous phase is retained when starting with the fcc phase while the initial structure is recovered when starting with the trigonal phase. We argue that the presence of vacancies and the associated subsequent large atomic displacements lead to nanoscale phase separation and the loss of the initial structure memory in the fcc staring phase of Ge-Sb-Te. We futher compare the amorphous phase obtained via the pressure route with the melt quenched amorphous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wuttig, M. and Yamada, N.. Phase-change materials for rewriteable data storage. Nature Mater., 6:824832, 2007.Google Scholar
[2] Wuttig, M.. Phase-change materials: towards a universal memory? Nature. Mater., 4(4):347–52, 2005.Google Scholar
[3] Nakamura, Y., Numata, M., Hoshino, H., and Shimoji, M.. Electrical conductivity of ge-te glasses under hydrostatic pressure. J. Non-Cryst.Solids, 17:259265, 1975.Google Scholar
[4] Birch, F.. Equation of state and thermodynamic parameters of nacl to 300 kbar in the hightemperature domain. J. Geophys. Res., 91:4949, 1986.Google Scholar
[5] Sata, N., Shen, G., Rivers, M. L., and Sutton, S. R.. Pressure-volume equation of state of the high-pressure b2 phase of nacl. Phys. Rev. B, 65:104114, 2002.Google Scholar
[6] Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diraction. Physica B, 192:5569, 1993.Google Scholar
[7] Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K., and Payne, M.C.. First principles methods using CASTEP. Zeitschrift für Kristallographie Kristallographie, 220(5/6/2005):567570, 2005.Google Scholar
[8] Krbal, M., Kolobov, A. V., Haines, J., Fons, P., Levelut, C., Parc, R. Le, Hanfland, M., Tominaga, J., Pradel, A., and Ribes, M.. Initial structure memory of pressure-induced changes in the phase-change memory alloy Ge Ge2Sb Sb2Te Te5. Phys. Rev. Lett., 103(11):115502, 2009.Google Scholar
[9] Cheng, Y.Q., Xu, M., and et al. Sheng, H.W. A body-centered polymorph of the gst phase change alloy. Appl. Phys. Lett., 95(13):131904, 2009.Google Scholar
10] Kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Katayama, Y., Hammouda, T., and Uruga, T.. Pressure-induced site-selective disordering of Ge Ge2Sb Sb2Te Te5: A new insight into phase-change optical recording. Phys. Rev. Lett., 97:035701, 2006.Google Scholar
[11] Degtyareva, O., McMahon, M. I., and Nelmes, R. J.. Pressure-induced incommensurate- incommensurateto-incommensurate phase transition in antimony. Phys. Rev. B, 70:184119, 2004.Google Scholar
12] Parthasarathy, G. and Holzapfel, W. B. High-pressure structural phase transitions in tellurium. Phys. Rev. B, 37(14):84998501, 1988.Google Scholar
[13] Caravati, S., Bernasconi, M., Kuhne, T.D., Krack, M., and Parrinello, M.. Unravelling the mechanism of presure induced amorphization of phase change materials. Phys. Rev. Lett., 102(20):205502, 2009.Google Scholar
[14] Krbal, M., Kolobov, A. V., Haines, J., Fons, P., Levelut, C., Parc, R. Le, Han-fland, M., Tominaga, J., Pradel, A., and Ribes, M.. Temperature independence of pressure- pressureinduced amorphization of the phase-change memory alloy Ge induced Ge2Sb Sb2Te Te5. Appl. Phys. Lett., 93:031918, 2008.Google Scholar