Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T08:36:29.178Z Has data issue: false hasContentIssue false

The Role of Metal and Passivation Defects in Electromigration-Induced Damage in Thin Film Conductors

Published online by Cambridge University Press:  15 February 2011

J. R. Lloyd
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533 (U.S.A.)
P. M. Smith
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533 (U.S.A.)
G. S. Prokop
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533 (U.S.A.)
Get access

Abstract

The effect of both metal defects (nicks and scratches) and passivation defects (Griffith cracks or pinholes) was theoretically and experimentally investigated. Flux divergences due to temperature and stress gradients are considered. It was observed that failure near a severe metal defect or at a defect in the passivation layer can be a major contributor to electromigration-induced lifetime degradation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 d'Heurle, F. M. and Peterson, D. T., in Kirk-Othmer, (ed.), Encyclopedia of Chemical Technology, Vol. 8, Wiley, New York, 3rd edn., 1979, p. 763, and references cited therein.Google Scholar
2 Howard, J. K. and Ross, R. F., Appl. Phys. Lett., 18 (1971) 344.Google Scholar
3 Attardo, M. J., Rutledge, R. and Jack, R. C., J. Appl. Phys., 42 (1971) 4343.Google Scholar
4 Blech, I. A. and Meiren, E. S., Appl. Phys. Lett., 11 (1967) 263.CrossRefGoogle Scholar
5 Black, J. R., IEEE Trans. Electron Devices, 16 (1969) 338.Google Scholar
6 Howard, J. K. and Ross, R. F., J. Appl. Phys., 42 (1971) 2996.Google Scholar
7 Lloyd, J. R., Thin Solid Films, 83 (1981) 207.Google Scholar
8 Sigsbee, R. A., J. Appl. Phys., 44 (1973) 2533.Google Scholar
9 Danso, K. A. and Tullos, L., Microelectron. Reliab., 21 (1981) 513.Google Scholar
10 Weise, J., Thin Solid Films, 14 (1972) 169.Google Scholar
11 Nikawa, K., Proc. 19th Reliability Physics Symp., Orlando, FL, April 7–9, 1981, IEEE, New York, 1981,p. 175.Google Scholar
12 Blech, I. A., J. Appl. Phys., 47 (1976) 1203.CrossRefGoogle Scholar
13 Blech, I. A. and Herring, C., Appl. Phys. Lett., 29 (1976) 131.Google Scholar
14 Blech, I. A. and Tai, K. L., Appl. Phys. Lett., 30 (1977) 387.Google Scholar
15 Kinsbron, E., Blech, I. A. and Komem, Y., Thin Solid Films, 46 (1977) 139.Google Scholar
16 Ainslee, N. G., d'Heurle, F. M. and Wells, O. C., Appl Phys. Lett., 20 (1972) 173.Google Scholar
17 Blech, I. A., personal communication, 1980.Google Scholar
18 Lloyd, J. R. and Nakahara, S., Thin Solid Films, 72 (1980) 451.Google Scholar
19 Spitzer, S. M. and Schwartz, S., IEEE Trans. Electron Devices, 16 (1969) 348.Google Scholar
20 Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York, 2nd edn., 1951, p. 60.Google Scholar
21 Learn, A. J., J. Appl. Phys., 44 (1973) 1251.Google Scholar
22 Satake, T., Yokoyama, K., Shirakawa, S. and Sawaguchi, K., Jpn. J. Appl. Phys., 12 (1973) 4.Google Scholar