Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T18:22:20.892Z Has data issue: false hasContentIssue false

Role of deep levels in DC current aging of GaN/InGaN Light-Emitting Diodes studied by Capacitance and Photocurrent Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Antonio Castaldini
Affiliation:
Anna Cavallini
Affiliation:
[email protected], University of Bologna, Physics, Italy
Lorenzo Rigutti
Affiliation:
[email protected], University of Bologna, Physics, Italy
Matteo Meneghini
Affiliation:
[email protected], University of Padova, Information Engineering, Italy
Simone Levada
Affiliation:
[email protected], University of Padova, Information Engineering, Italy
Gaudenzio Meneghesso
Affiliation:
[email protected], University of Padova, Information Engineering, Italy
Enrico Zanoni
Affiliation:
[email protected], University of Padova, Information Engineering, Italy
Volker Härle
Affiliation:
[email protected], Osram Opto Semiconductors, Germany
Thomas Zahner
Affiliation:
[email protected], Osram Opto Semiconductors, Germany
Ulrich Zehnder
Affiliation:
[email protected], Osram Opto Semiconductors, Germany
Get access

Abstract

We present a combined Capacitance-Voltage (C-V), Deep Level Transient Spectroscopy (DLTS) and Photocurrent (PC) study of short-term instabilities of InGaN/GaN LEDs submitted to forward current aging tests at room temperature. C-V profiles detect changes consisting in apparent doping and/or charge concentration increase within the quantum wells. This increase is correlated to dramatic modifications in the DLTS spectrum when the reverse bias and filling pulse are properly adjusted in order to probe the quantum well region. The new distribution of the electronic levels detected by DLTS could explain the observed decrease in the light emission efficiency [1,2] of the device, as the deep levels generated during the stress may provide alternative recombination paths for free carriers. The photocurrent spectra do not change in shape during stress, although their amplitude slightly decreases. This is related to a decrease of the device yield, in this photodetector configuration, with increasing aging time. Thus, we can suggest that the introduction of new defect levels in the bulk material lowers the free carrier mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Castaldini, A., Cavallini, A., Rigutti, L., Meneghini, M., Levada, S., Meneghesso, G., Zanoni, E., Härle, V., Zahner, T., and Zehnder, U., Phys. stat. sol. (c), 2 (7), 2862 (2005).CrossRefGoogle Scholar
[2] Rossi, F., Pavesi, M., Meneghini, M., Salviati, G., Manfredi, M., Meneghesso, G., Zanoni, E., Castaldini, A., Cavallini, A., Rigutti, L., Strauss, U., Zehnder, U., J. Appl. Phys., submitted.Google Scholar
[3] Yanagisawa, T., Kojima, T., Microelectronics Reliability, 43(6), 977980 (2003).CrossRefGoogle Scholar
[4] Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Kim, J., Luo, B., Mehandru, R., Ren, F., Lee, K.P., Pearton, S.J., Osinsky, A.V., and Norris, P.E., J. Appl. Phys. 91, 5203 (2002).CrossRefGoogle Scholar
[5] Barton, D. L. et al. , Microelectronics Reliability, 39, 12191227 (1999).CrossRefGoogle Scholar
[6] Zohta, Y., Journal of Crystal Growth, 189/190, 816819, (1998).CrossRefGoogle Scholar
[7] Fang, Z. Q., Reynolds, D. C., and Look, D. C., J. Electron. Mat. 29, 448 (2000)CrossRefGoogle Scholar
[8] D. K., 7, Semiconductor Material and Device Characterization (Wiley-Interscience, New York, 1998).Google Scholar
[9] Moon, C. R., Choe, B. D., Kwon, S. D., Shin, H. K., and Lim, H. J., J. Appl. Phys. 84, 2673 (1998).Google Scholar
[10] Blood, P. and Orton, J. W. The electrical characterization of semiconductors: majority carriers and electron states (London: Academic Press, 1989) p 295302 and p 369–371Google Scholar
[11] Lucia, M. L., Hernandez-Rojas, J. L., Leon, C., and Mártil, I., Eur. J. Phys. 14, 86 (1993).CrossRefGoogle Scholar
[12] Ershov, M., Yaldiz, B., Perera, A. G. U., Matsik, S. G., Liu, H. C., Buchanan, M., Wasilewski, Z. R., and Williams, M. D., Infrared Phys. Technol. 42, 259 (2001)CrossRefGoogle Scholar
[13] Tschirner, B.M., Morier-Genoud, F., Martin, D., and Reinhart, F. K., J. Appl. Phys. 79, 7005 (1996).CrossRefGoogle Scholar
[14] Cho, H.K., Kim, C.S. and Hong, C. H., J. Appl. Phys. 94, 1485 (2003 CrossRefGoogle Scholar
[15] Soh, C.B., Chua, S.J., Lim, H.F., Chi, D.Z., Liu, W. and Tripathy, S., J. Phys. Cond. Mat., 16, 6305 (2004).CrossRefGoogle Scholar