Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T00:00:42.375Z Has data issue: false hasContentIssue false

Review on Development and Investigations of Phase Change Materials in Thermal Energy Storage

Published online by Cambridge University Press:  01 February 2011

Zhu Xiaoqin
Affiliation:
[email protected],Kunming University of Science and Technology, Kunming,China, People's Republic of
Hu Jin
Affiliation:
[email protected],Kunming University of Science and Technology,Kunming,650093,China, People's Republic of
Cao Zhaosheng
Affiliation:
[email protected], Kunming University of Science and Technology, Kunming, 650093, China, People's Republic of
Lu Jiansheng
Affiliation:
[email protected], Kunming University of Science and Technology, Kunming, 650093, China, People's Republic of
Sun Jialin
Affiliation:
[email protected], Kunming University of Science and Technology, Kunming, 650093, China, People's Republic of
Noureddine Ben-Abdallah
Affiliation:
[email protected], Dalhousie University, Halifax, B3J2X4, Canada
Get access

Abstract

Thermal energy storage with phase change materials is one of the most efficient ways of storing available energy because of its advantages such as providing higher heat storage capacity, lower storage temperature, isothermal operation and less storage space. This paper reviews the development and investigations of phase change materials in thermal energy storage systems of various engineering applications. There are many phase change materials that melt and solidify at a wide range of temperatures, making them attractive in a lot of applications. Various categories of phase change materials suitable for thermal energy storage are introduced, and the investigations on their important enhancement techniques are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Paris, J. Falardeau, M. and Villeneuve, C. Energy Sources 15, 85(1993).Google Scholar
2 Khudhair, A.M. and Farid, M.M. Energy Conversion and Management 45, 263(2004).Google Scholar
3 Garg, H.P. and Nasim, M. Energy Conversion and Management 21, 125(1981).Google Scholar
4 Marks, S.B. Solar Energy 30, 45(1983).Google Scholar
5 Abhat, A. Solar Energy 30, 313(1983).Google Scholar
6 Garg, H.P. Mullick, S.C. and Bhargave, A.K.Solar thermal energy storage”, (D., Reidel 1985)pp.171197.Google Scholar
7 Hasnain, S.M. Energy Conversi on and Management 39, 1127(1998).Google Scholar
8 Wang, X. Lu, E. Lin, W. Liu, T. Shi, Z. Tang, R. and Wang, C. Energy Conversion and Management 41, 129(2000).Google Scholar
9 Wang, X. Lu, E. Lin, W. and Wang, C. Energy Conversion and Management 41, 135(2000).Google Scholar
10 Jing, Y. Ding, E. and Li, G. Polymer 43, 117(2002).Google Scholar
11 Son, C.H. and Morehouse, J.H. ASME Journal of Solar Energy Engineering 113, 244(1991).Google Scholar
12 Zhang, Z. Yang, M. and Li, H. Thermochimica Acta 202, 105(1992).Google Scholar
13 Ruan, D. Zhang, T. Liang, S. and Hu, Q. Acta Energine Solaris Sinica 15, 19(1994).Google Scholar
14 Lamberg, P. Applied Energy 77, 131(2004).Google Scholar
15 Sasaguchi, K. Imura, H. and Furusho, H. Bull JSME 29, 2986(1986).Google Scholar
16 Lacroix, M. International Journal of Heat and Mass Transfer 36, 2083(1993).Google Scholar
17 Velraj, R. Seeniraj, R.V. Hafner, B., Faber, C. and Schwarzer, K. Solar Energy 60, 281(1997).Google Scholar
18 Costa, M. Buddhi, D. and Oliva, A. Energy Conversion and Management 39, 319(1998).Google Scholar
19 Ismail, K.A.R. Alves, C.L.F. and Modesto, M.S. Applied Thermal Engineering 21, 53(2001).Google Scholar
20 Velraj, R. Seeniraj, R.V. Hafner, B. Faber, C. and Schwarzer, K. Solar Energy 65, 171(1999).Google Scholar
21 Siegel, R. International Journal of Heat and Mass Transfer 20, 1087(1977).Google Scholar
22 Hoogendoorn, C.J. and Bart, G.C.J. Solar Energy 48, 53(1992).Google Scholar
23 Tong, X. Khan, J. and Amin, M.R. Numerical Heat Transfer 30, 125(1996).Google Scholar
24 Farid, M.M. Khudhair, A.M. Razack, S.A.K. and Al-Hallaj, S., Energy Conversion and Management 45, 1597(2004).Google Scholar
25 Nelson, G. International Journal of Pharmaceutics 242, 55(2002).Google Scholar
26 Hawlader, M.N.A. Uddin, M.S. and Khin, M.M. Applied Energy 74, 195(2003).Google Scholar
27 Nuckols, M.L. Ocean Engineering 26, 547(1999).Google Scholar
28 Hawlader, M.N.A. Uddin, M.S. Zhu, H.J. International Journal of Energy Research 26, 159(2002).Google Scholar
29 Hittle, D.C. and Andre, T.L. ASHRAE Transactions 108, 175(2002).Google Scholar
30 Kim, J. and Cho, G. Textile Research Journal 72, 1093(2002).Google Scholar
31 Py, X. Olives, R. and Mauran, S. International Journal of Heat and Mass Transfer 44, 2727(2001).Google Scholar
32 Fukai, J. Kanou, M. Kodama, Y. and Miyatake, O. Energy Conversion and Management 41, 1543(2000).Google Scholar
33 Fukai, J. Hamada, Y. Morozumi, Y. and Miyatake, O. International Journal of Heat and Mass Transfer 45, 4781(2002).Google Scholar
34 Xiao, M. Feng, B. Gong, K. Solar Energy Material and Solar Cells 69, 293(2001).Google Scholar
35 Sari, A. Energy Conversion and Management 45, 2033(2004).Google Scholar
36 Marín, J.M., Zalba, B. Cabeza, L.F. and Mehling, H. International Journal of Heat and Mass Transfer 48, 2561(2005).Google Scholar