Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T03:49:43.686Z Has data issue: false hasContentIssue false

Reversible Multi-level Resistance Switching of Ag-La0.7Ca0.3MnO3-Pt Heterostructures

Published online by Cambridge University Press:  01 February 2011

Dashan Shang
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, No. 1295, Dingxi Road, Shanghai City, Shanghai, 200050, China, People's Republic of
Lidong Chen
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, 200050, China, People's Republic of
Qun Wang
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai, 200050, China, People's Republic of
Zihua Wu
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, No. 1295, Dingxi Road, Shanghai, 200050, China, People's Republic of
Wenqing Zhang
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, No. 1295, Dingxi Road, Shanghai, 200050, China, People's Republic of
Xiaomin Li
Affiliation:
[email protected], Chinese Academy of Sciences, Shanghai Institute of Ceramics, No. 1295, Dingxi Road, Shanghai, 200050, China, People's Republic of
Get access

Abstract

Resistance random access memory (RRAM) has attracted intense attention in recent years for the potential application as nonvolatile memory. One of the tempting properties of RRAM is the multi-level memory, in which several resistance states can be obtained and each of them can be used to save information. In this paper, the electric-pulse-induced multi-level resistance switching of the Ag-La0.7Ca03MnO3-Pt heterostructures was studied. The multi-level resistance switching (MLRS) was observed in the switching from high to low resistance state (HRS→LRS) by applying electric pulse with various pulse voltages. The threshold pulse voltages of MLRS are related to the initial resistance values as well as the switching directions. On the other hand, the resistance switching behavior from low to high resistance states (LRS→HRS) shows unobvious MLRS. MLRS was explained by the parallel effect of multi-filament forming/rupture in the Ag/La0.7Ca0.3MnO3 interface layer. The present results suggest a possible application of Ag-La0.7Ca03MnO3-Pt heterostructures as multi-level memory devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamamoto, T., Kano, H., Higo, Y., Ohba, K., Mizuguchi, T., Hosomi, M., Bessho, K., Hashimoto, M., Ohmori, H., Sone, T., Endo, K., Kubo, S., Narisawa, H., Otsuka, W., Okazaki, N., and Motoyoshi, M., J. Appl. Phys. 97, 10P503 (2005).Google Scholar
2. Scott, J. F., Ferroelectric Memories (Springer, Berlin, 2000).Google Scholar
3. Lankhorst, M. H. R., Ketelaars, B. W. S. M. M., and Wolters, R. A. M., Nat. Mater. 4, 347 (2005).Google Scholar
4. Naber, R. C. G., Tanase, C., Blom, P. W. M., Gelinck, G. H., Marsman, A. W., Touwwslager, F. J., Setayesh, S., and Leeuw, D. M. de, Nat. Mater. 4, 243, (2005).Google Scholar
5. Rozenberg, M. J., Inoue, I. H., and Sánchez, M. J., Phys. Rev. Lett. 92, 178302 (2004).Google Scholar
6. Liu, S. Q., Wu, N. J., and Ignatiev, A., Appl. Phys. Lett. 76, 2479 (2000).Google Scholar
7. Dong, R., Wang, Q., Chen, L. D., Shang, D. S., Chen, T. L., Li, X. M., Zhang, W. Q., Appl. Phys. Lett. 86, 172107 (2005).Google Scholar
8. Beck, A., Bednorz, J. G., Gerber, Ch., Rossel, C., and Widmer, D., Appl. Phys. Lett. 77, 139 (2000).Google Scholar
9. Watanabe, Y., Bednorz, J. G., Bietsch, A., Gerber, Ch., Widmer, D., Beck, A., and Wind, S. J., Appl. Phys. Lett. 78, 3738 (2001).Google Scholar
10. Seo, S., Lee, M. J., Seo, D. H., Jeoung, E. J., Suh, D. –S., Joung, Y. S., Yoo, I. K., Hwang, I. R., Kim, S. H., Byun, I. S., Choi, J. –S., and Park, B. H., Appl. Phys. Lett. 85, 5655 (2004).Google Scholar
11. Rohde, C., Choi, B. J., Jeong, D. S., Choi, S., Zhao, J. S., and Hwang, C. S., Appl. Phys. Lett. 86, 262907 (2005).Google Scholar
12. Sakamaoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., and Aono, M., Appl.Phys. Lett. 82, 3032 (2003).Google Scholar
13. Sluis, P. Van der, Appl. Phys. Lett. 82, 4089 (2003).Google Scholar
14. Ma, L., Xu, Q., Yang, Y., Appl. Phys. Lett. 84, 4908 (2004).Google Scholar
15. Quyang, J. Y., Chu, C. -W., Szmanda, C. R., Ma, L. P., and Yang, Y., Nat. Mater. 3, 918 (2004).Google Scholar
16. Mukherjee, B., Pal, A. J., Appl. Phys. Lett. 85, 2116 (2004).Google Scholar
17. Bandyopadhyay, A., Pal, A. J., Appl. Phys. Lett. 84, 999 (2004).Google Scholar
18. Shang, D. S., Wang, Q., Chen, L. D., Dong, R., Li, X. M., and Zhang, W. Q., Phys. Rev. B 73, 245427 (2006).Google Scholar
19. Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B., and Tiedke, S., J. Appl. Phys. 98, 033715 (2005).Google Scholar
20. Kim, D. C., Seo, S., Ahn, S. E., Suh, D. S., Lee, M. J., Park, B. H., Yoo, I. K., Baek, I. G., Kim, H. J., Yim, E. K., Lee, J. E., Park, S. O., Kim, H. S., Chung, U-In, Moon, J. T., and Ryu, B. I., Appl. Phys. Lett. 88, 202102 (2006).Google Scholar
21. Rozenberg, M. J., Inoue, I. H., and Śnchez, M. J., Appl. Phys. Lett. 88, 033510, (2006).Google Scholar
22. Sawa, A., Fujii, T., Kawasaki, M., and Tokura, Y., Appl. Phys. Lett. 85, 4073 (2004).Google Scholar
23. Tsui, S., Baikalov, A., Cmaidalka, J., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Chu, C. W., Chen, L. and Jacobson, A. J., Appl. Phys. Lett. 85, 317 (2004).Google Scholar
24. Chen, X., Wu, N. J., Strozier, J., and Ignatiev, A., Appl. Phys. Lett. 89, 063507 (2006).Google Scholar