Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T02:49:11.354Z Has data issue: false hasContentIssue false

Resonant Raman Scattering by Strained and Relaxed Ge Quantum Dots

Published online by Cambridge University Press:  11 February 2011

Alexander G. Milekhin
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
Alexander I. Nikiforov
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
Mikhail Ladanov
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
Oleg P. Pchelyakov
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
Dmitri A. Tenne
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
Steffen Schulze
Affiliation:
Institut für Physik, Technische Universität Chemnitz, D-09107, Chemnitz, Germany
Dietrich R.T. Zahn
Affiliation:
Institut für Physik, Technische Universität Chemnitz, D-09107, Chemnitz, Germany
Get access

Abstract

Fundamental vibrations in Ge/Si structures with strained and relaxed Ge quantum dots (QDs) grown by molecular beam epitaxy were investigated using resonant Raman spectroscopy. Transmission electron microscopy experiments show that the strained Ge QDs are typical “hut clusters” with base size of 15nm and a height of 2nm. A two mode distribution in size (100–200nm and 3–6nm) is found for relaxed QDs. The Raman efficiencies of the Ge optical phonons as a function of excitation energy reveal maxima at 2.35–2.41eV attributed to the E0 resonance in Ge QDs due to electronic confinement. The frequency positions of optical phonons localized in Ge “hut clusters” under non-resonant conditions correspond to fully strained Ge QDs while the frequency position of optical phonons in relaxed Ge QDs corresponds to the value in bulk Ge. With increasing excitation energy (2.5–2.7eV) the position of the Ge optical phonons shifts downwards due to size-confinement effect of optical phonons in strained and relaxed Ge QDs, indicating the presence of a QD size distribution in Ge dot structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Woggon, U., Optical properties of Semiconductor quantum dots, Springer Tracts in Modern Physics v. 136 (Berlin, Heidelberg, 1997).Google Scholar
Beaumont, P. and Sotomayor-Torres, C. N. eds., Science and Engineering of One-and Zero- Dimensional Semiconductors, v. 214 (New York: Plenum Press, 1990).Google Scholar
3. Bimberg, D., Grundmann, M., and Ledentsov, N. N., Quantum Dot Heterostructures (Wiley, New York, 1999).Google Scholar
4. Alivisatos, A. P., MRS Bulletin/February, 18 (1998).Google Scholar
5. Voigtlaender, B., Surf. Sci. Reports 43, 127 (2001).Google Scholar
6. Liu, F., Lagally, M.G., Surf. Sci. 386, 169 (1997).Google Scholar
7. Peng, C. S., Huang, Q., Cheng, W. Q., Zhou, J. M., Zhang, Y. H., Sheng, T. T. and Tung, C. H., Phys. Rev. B57, 8805 (1998).Google Scholar
8. Shklyaev, A. A., Shibata, M. and Ichikawa, M., Phys. Rev. B62, 1340 (2000).Google Scholar
9. Kwok, C. H., Yu, P. Y., Tung, C. H., Zhang, Y. H., Li, M. F., Peng, C. S. and Zhou, J. M. Phys. Rev. B59, 4980 (1999).Google Scholar
10. Shin, H. K., Loockwood, D. J. and Baribeau, J.-M., Solid St. Comm. 114, 505 (2000).Google Scholar
11. Milekhin, A. G., Nikiforov, A. I., Pchelyakov, O. P., Schulze, S. and Zahn, D. R. T., Eur. Phys. J. B16, 355 (2002).Google Scholar
12. Guedj, C., Beyer, A., Mueller, E. and Gruetzmacher, D., Appl. Phys. Lett. 78, 1742 (2001).Google Scholar
13. Milekhin, A., Schulze, S., Zahn, D. R. T., Stepina, N., Yakimov, A. and Nikiforov, A., Appl. Surf. Sci. 175–176, 629 (2001).Google Scholar
14. Kolobov, A. V., J. Appl. Phys. 87 2926 (2000).Google Scholar
15. Nenashev, A. V. and Dvurechensky, A. V., JETP 91, 497 (2000).Google Scholar
16. Schorer, R., Abstreiter, G., Gironcoli, S. de, Molinari, E., Kibbel, H. and Presting, H., Phys. Rev. B49, 5406 (1994).Google Scholar
17. Talochkin, A. B., Markov, V. A., Nikiforov, A. I. and Teys, S. A., JETP Lett. 70, 288 (1999).Google Scholar
18. Campbell, I. H. and Fauchet, P. M., Solid State Commun. 58, 739 (1986).Google Scholar