Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T03:15:16.942Z Has data issue: false hasContentIssue false

Resistance Sensor Based on Thermophoresis for Soot in Diesel Exhaust

Published online by Cambridge University Press:  01 February 2011

Robert Bjorklund
Affiliation:
[email protected], Linköping University, Linköping, Sweden
Mats L. Johansson
Affiliation:
[email protected], Volvo Car Corp., Göteborg, Sweden
Ann Grant
Affiliation:
[email protected], Volvo Technology Corp., Göteborg, Sweden
Peter Jozsa
Affiliation:
[email protected], Volvo Technology Corp., göteborg, Sweden
Per-Erik Fägerman
Affiliation:
[email protected], Mandalon Technologies AB, Linköping, Sweden
Jaska Paaso
Affiliation:
[email protected], Selmic OY, Oulu, Finland
Andreas Larsson
Affiliation:
[email protected], Sintef ICT, Blindern, Norway
Doina Lutic
Affiliation:
[email protected], Iasi University, Iasi, Romania
Anita Lloyd Spetz
Affiliation:
[email protected], Linköping University, Linköping, Sweden
Get access

Abstract

A resistance sensor for use in diesel exhaust is reported. Several soot deposition mechanisms contribute to collection on the sensing electrodes. The sensor is designed to enhance the temperature difference between the electrode surface and the ambient. The resulting thermophoretic force on nanoparticles enhances soot deposition. Exhaust soot concentrations were shown to correlate with resistance decreases and the effect of thermophoresis was studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rhodes, M. L., Krafthefer, B. C., Ma, H. and Kittelson, D. B., U.S. 6,971,258, assigned to Honeywell International, Inc. (2005).Google Scholar
2 Ntziachristos, L., Tzamkiozis, T. and Tikkanen, J. A., http://www.ms4.info/news/A_New_On- Board_Particle_Sensor.pdf.Google Scholar
3 Fleischer, M., Pohle, R., Wiesner, K. and Meixner, H., Eurosensors XIX, Barcelona (2005).Google Scholar
4 Wirth, R., Haerle, H., Handler, T., Samuelsen, D., Christ, W., Rösch, S., Kamp, B., Kolitsch, M. and Schaenzlin, K., U.S. 7, 587,925, assigned to Robert Bosch GmbH (2009).Google Scholar
5 Ripley, E. V., U.S. 7,609,068, assigned to Delphi Technologies, Inc. (2009).Google Scholar
6 Popovicheva, O. B., Persiantseva, N. M., Kuznetsov, B. V., Rakhmanova, T. A., Shonija, N. K., Suzanne, J. and Ferry, D., J Phys. Chem. A 107, 10046 (2003).Google Scholar
7 Lorenzo, R. Kaegi, R., Gehrig, R., Scherrer, L., Grobety, B. and Burtscher, H., Aerosol Sci. Technol. 41, 934 (2007).Google Scholar
8 Larsson, A. and Oldervoll, F., IMAPS Nordic Conference Tønsberg (2009).Google Scholar
9 Messerer, A., Niessner, R. and Pöschl, U., J. Aerosol Sci. 34, 1009 (2003).Google Scholar
10.Tamura, A., Yamashita, T., Matsui, H., Matsuzaki, K. and Hayashi, T., IEEE International Symposium on Semiconducting Manufacturing Conference Proceedings, 613 (2007).Google Scholar