Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T15:08:59.132Z Has data issue: false hasContentIssue false

Residual Stress Distribution, Intermolecular Force, And Frictional Coefficient Maps In Diamond Films: Processing-Structure-Mechanical Property Relationship

Published online by Cambridge University Press:  26 February 2011

Sanju Gupta
Affiliation:
[email protected], University of Missouri-Columbia, Electrical and Computer Engineering, 6th St. 303 EBW, Columbia, MO, 65211-2300, United States, 57388200948, 5738820397
Oliver Williams
Affiliation:
[email protected], Institute of Materials Research, Diepenbeek, BE-3590, Belgium
R. J. Patel
Affiliation:
[email protected], Missouri State University, Physics and Materials Science Department, 901 S. National Ave., Springfield, MO, 65987, United States
E. Bohannan
Affiliation:
[email protected], University of Missouri-Rolla, Department of Chemistry, Rolla, MO, 65409, United States
P. W. May
Affiliation:
[email protected], University of Bristol, School of Chemistry, Bristol, BS8 1TS, United Kingdom
Get access

Abstract

Carbon in its various forms, specifically nanocrystalline diamond, may become a key material for the manufacturing of micro- and nano-electromechanical (M/NEMS) devices in the 21st Century. In order to utilize effectively these materials for M/NEMS applications, understanding of their microscopic structure and physical (mechanical properties, in particular) become indispensable. The micro- and nanocrystalline diamond films were grown using hot-filament and microwave chemical vapor deposition techniques involving novel CH4 / [TMB for boron doping and H2S for sulfur incorporation] in high hydrogen dilution chemistry. To investigate residual stress distribution and intermolecular forces at nanoscale, the films were characterized using Raman spectroscopy and atomic force microscopy in terms of topography, force curves and force volume imaging. Traditional force curve measures the force felt by the tip as it approaches and retracts from a point on the sample surface, while force volume is an array of force curves over an extended range of sample area. Moreover, detailed microscale structural studies are able to demonstrate that the carbon bonding configuration (sp2 versus sp3 hybridization) and surface chemical termination in both the un-doped and doped diamond have a strong effect on nanoscale intermolecular forces. The preliminary information in the force volume measurement was decoupled from topographic data to offer new insights into the materials's

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kalish, R., in Properties of Diamond, Ch. 6 edited by Davies, G., INSPEC (1994); J. A. Garrido, C. E. Nebel, M. Stutzmann, E. Gheeraert, N. Casanova, E. Bustarret, and A. Deneuville: A new acceptor state in CVD-diamond, Diam. and Relat. Materials, 11 347 (2002).Google Scholar
2. For a review see: Angus, J. C., Koidl, P. and Domitz, S. in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F., (CRC, Boca Raton, FL, 1986); P. K. Bachmann and R. Messier, Chem. Eng. News, 67 24 (1989).Google Scholar
3. Nazare, M. H., in Properties and growth of diamond, edited by Davies, G., EMIS Data Review Series, INSPEC, 1994, p.85.Google Scholar
4. John, P.: The oxidation of (100) textured diamond, Diam. and Relat. Materials, 11 861 (2002).Google Scholar
5. Cui, J. B., Robertson, J., and Milne, W. I.: The effect of film resistance on electron field emission from amorphous carbon films, Diam. and Relat. Materials, 10 868 (2001) and references therein.Google Scholar
6. Chen, K. H., Lai, Y. L., Chen, L. C., Wu, J. Y., and Kao, F. J.: High-temperature Raman study in CVD diamond, Thin Solid Films, 270 143 (1995); K. H. Chen, J. Y. Wu, L. C. Chen, C. C. Juan, and T. Hsu: Wide Bandgap Semiconductors and Devices - State-of-the-Art Program on Compound Semiconductors, Electrochemical Soc. Proc. 95–21 57 (1995).Google Scholar
7. Yarbrough, W. A. and Messier, R.: Chemical Vapor Deposited Diamond Films, Science, 247 688 (1990).Google Scholar
8. Gruen, D. M.: Nanocrystalline diamond, Ann. Rev. Mater. Sci. 29 211 (1999).Google Scholar
9. Sharda, T., Rahaman, M. M., Nukaya, Y., Soga, T., Jimbo, T. and Umeno, M.: High compressive stress in nanocrystalline diamond films grown by microwave plasma chemical vapor deposition, Diam. and Relat. Materials, 10 352 (2001).Google Scholar
10. Morrison, N. A., Muhl, S., Rodil, S. E., Ferrari, A. C., Nesladek, M., Milne, W. I. and Robertson, J.: The Preparation, Characterization and Tribological Properties of TA-C:H Deposited Using an Electron Cyclotron Wave Resonance Plasma Beam Source, Phys. Stat. Sol. A 172 79 (1999).Google Scholar
11. Robertson, J.: Diamond-like carbon, Philos. Mag. B 76 335 (1997) and references therein.Google Scholar
12. Gupta, S., Weiner, B. R., and Morell, G.: Role of sp2 C cluster size on the field emission properties of sulfur-incorporated nanocomposite carbon thin films, Appl. Phys. Lett. 80 1471 (2002).Google Scholar
13. Williams, O. A., Curat, S., Jackman, R. B., Gerbi, J. E., and Gruen, D. M.: n-type conductivity in ultrananocrystalline diamond films, Appl. Phys. Lett. 85 1680 (2004).Google Scholar
14. Gupta, S., Weiner, B. R., and Morell, G.: Electron field emission properties of microcrystalline and nanocrystalline carbon thin films deposited by S-assisted hot filament CVD, Diam. and Relat. Materials, 11 799 (2002).Google Scholar
15. Binnig, G., Quate, C. F., and Gerber, C.: Atomic Force Microscope, Phys. Rev. Lett. 56 930 (1986).Google Scholar
16. Cullity, B. D., in Elements of X-ray Diffraction, 2nd ed. (Addison-Wesley, Massachusetts, 1978), pp. 102111.Google Scholar
17. Knight, D. S. and White, W. B.: Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4 385 (1989); M. Yoshikawa: Properties and Characterization of Amorphous Carbon Films, Mat. Sci. Forum, 52 & 53 365 (1989).Google Scholar
18. Gupta, S., Katiyar, R. S., Gilbert, D. R., Singh, R. K., and Morell, G.: Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition, J. Appl. Phys. 88 5695 (2000).Google Scholar
19. Bergmann, L. and Nemanich, R. J.: Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films, J. Appl. Phys. 78 6709 (1995). 20 R. J. Nemanich, J. T. Glass, G. Luckovsky, and R. E. Shröder: Raman scattering characterization of carbon bonding in diamond and diamond-like thin films, J. Vac. Sci. Technol. A 6 1783 (1988) and references therein.Google Scholar
20. Gupta, S., Weiner, B. R., and Morell, G.: Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition, J. Mater. Res. 18 (2) 363 (2002).Google Scholar
21. Williams, O. A., Daenen, M., Haen, J. D., Haenen, K., Nesladek, M., and Olieslaeger, M. D., ADC05, Argonne National Laboratory, IL.Google Scholar
22. Dembo, M. and Wang, Y. L.: Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts, Biophys J. 76 (4) 2307 (1999); J. Domke, W. J. Parak, M. George, H. E. Gaub, M. Radmacher: Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope, Eur. Biophys. J. 28 179 (1999).Google Scholar
23. Rotsch, C. and Radmacher, M.: Mapping Local Electrostatic Forces with the Atomic Force Microscope, Langmuir, 13 2825 (1997).Google Scholar
24. Chhowalla, M., Ferrari, A. C., Robertson, J. and Amaratunga, G. A. J.: Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy, Appl. Phys. Lett. 76 1419 (2000).Google Scholar
25. Ferrari, A. C. and Robertson, J.: Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond, Phys. Rev. B 63 12 1405 (2001); H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther: The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films, Carbon 42 911 (2004).Google Scholar