Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T23:06:33.406Z Has data issue: false hasContentIssue false

Residual Impurities And Transport Properties of High Purity Movpe Gaas

Published online by Cambridge University Press:  15 February 2011

G. Steude
Affiliation:
I. Physikalisches Insitut der Justus Liebig Universitdt Giessen, Heinrich Buff Ring 16, D-35392 Giessen, Germany
D. M. Hofmann
Affiliation:
Physics Department E 16, Technical University of Munich, D-85747 Garching, Germany
M. Drechsler
Affiliation:
Physics Department E 16, Technical University of Munich, D-85747 Garching, Germany
B. K. Meyer
Affiliation:
I. Physikalisches Insitut der Justus Liebig Universitdt Giessen, Heinrich Buff Ring 16, D-35392 Giessen, Germany
H. Hardtdegen
Affiliation:
Institut fir Schicht- und lonentechnik des Forschungszentrums JRilich, D-52425 Julich, Germany
M. Hollfelder
Affiliation:
Institut fir Schicht- und lonentechnik des Forschungszentrums JRilich, D-52425 Julich, Germany
Get access

Abstract

High purity GaAs grown by metal organic vapor phase epitaxy (MOVPE) using nitrogen as a carrier gas has been studied by optically detected cyclotron resonance (ODCR) at microwave and far infrared frequencies. Upon variation of the experimental parameters such as sample temperature, optical excitation density and microwave power the residual ionized (donor) and neutral (acceptor) impurity concentrations can be estimated, they are 2×1012 cm−3 and 5×1013 cm−3, respectively. The luminescence results indicate C to be the dominant residual acceptor. The residual donors were identified as S, Se, Sn from the observation of the internal 1s - 3p×105 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hardtdegen, H., Giannoules, P., Ill/Vs Review 8, 34 (1995)Google Scholar
[2] Godlewski, M., Chen, W. M., and Monemar, B., Crit. Rev. Solid State Mater. Sci. 19, 241 (1994)Google Scholar
[3] Kittel, C., Dresselhaus, G., Kip, A. F., Phys. Rev. 98, 368 (1955)Google Scholar
[4] Hamilton, B., Properties of GaAs, (INSPEC publication, London, 1990) p. 246 Google Scholar
[5] Michels, J. G., Warburton, R. J., Nicholas, R. J., and Stanley, C. R., Semicond. Sci. Technol. 9, 198 (1994)Google Scholar
[6] Böer, K. W., Survey of semiconductor physics (Van Nostrand Reinhold, New York, 1990)Google Scholar
[7] Wasilewski, Z. and Stradling, R. A., Semicond. Sci. Technol. 1, 264 (1986)Google Scholar